Quantum linear systems algorithm with exponentially improved dependence on precision

Andrew Childs (U. Maryland)

Robin Kothari (MIT)

Rolando Somma (Los Alamos)

arXiv:1511.02306 QIP 2016

Summary

Known [HHL09]: Quantum algorithm to solve* (to error ϵ) a system of $N \times N$ linear equations* Running time is poly(log N, $1/\epsilon$)

Our result: Running time can be improved to poly(log N, log(1/ ϵ)) for the same problem

Solving linear equations

Input: Hermitian matrix A in $\mathbb{C}^{N\times N}$ and vector \vec{b} in \mathbb{C}^{N}

Goal: To solve the equation

$$A\vec{x} = \vec{b}$$

i.e., to compute (approximately) $\vec{x} = A^{-1}\vec{b}$

How are the inputs and outputs represented?

If A, \vec{b} , and \vec{x} are written explicitly, then

- Classically, we can solve this in time poly(N)
- \circ Quantumly, we need poly(N) time \Rightarrow no exponential speedup

Quantum linear systems problem (QLSP)

Goal: To solve the equation (given Hermitian A in $\mathbb{C}^{N\times N}$ and \vec{b} in \mathbb{C}^{N})

$$A\vec{x} = \vec{b}$$

i.e., to compute (approximately) $\vec{x} = A^{-1}\vec{b}$

Modified problem

- 1. Assume A is
 - Sparse: At most polylog *N* nonzero entries per row/column
 - Row computable: Nonzero entries computable in time polylog *N*
 - Well conditioned: Condition number $\kappa := \lambda_{\text{max}}/\lambda_{\text{min}}$ is polylog *N*
- 2. Assume $|b\rangle := \vec{b}/||\vec{b}||$ can be created efficiently (time polylog N)
- 3. New Goal: Create the quantum state $|x\rangle := \vec{x}/||\vec{x}||$ up to error ϵ

Known results

Theorem [HarrowHassidimLloyd09]

Let *A* be *d*-sparse, ||A|| = 1, and have condition number κ . QLSP can be solved in time $O(d\kappa^2/\epsilon \text{ polylog}(Nd\kappa/\epsilon))$

Tools: Hamiltonian simulation, phase estimation (source of $1/\epsilon$)

Theorem [Ambainis12]

Improved dependence on κ : $O(d\kappa/\epsilon^3 \text{ polylog}(Nd\kappa/\epsilon))$

Tools: Variable-time amplitude amplification (uses phase est.)

Applications: Solving differential equations [Berry10]
Machine learning [WiebeBraunLloyd12, LloydMohseniRebentrost13]
Computing scattering cross sections [CladerJacobsSprouse13]
Computing effective resistance [Wang13]

Our results

Theorem [HarrowHassidimLloyd09]

Let *A* be *d*-sparse, ||A|| = 1, and have condition number κ . QLSP can be solved in time $O(d\kappa^2/\sqrt{polylog}(Nd\kappa/\epsilon))$

Our Result: Running time $O(d\kappa^2 \text{ polylog}(Nd\kappa/\epsilon))$

Theorem [Ambainis12]

Improved dependence on κ : $O(d\kappa/\xi^3 \text{ polylog}(Nd\kappa/\epsilon))$

Our Result: Running time $O(d\kappa \text{ polylog}(Nd\kappa/\epsilon))$

Why $\log(1/\epsilon)$?

- Useful when using QLSP as a subroutine
- Natural scaling for many problems of interest
- Complexity-theoretic implications (e.g., [FeffermanLin16])

Part 2: techniques

Linear combination of unitaries

$$V = \alpha_0 U_0 + \alpha_1 U_1 + \cdots \qquad \text{Let } \|\alpha\|_1 \coloneqq \sum_i |\alpha_i|$$

Map we want to perform Easy-to-perform unitaries

Goal: To create the state $V|b\rangle/||V|b\rangle||$.

Linear combination of unitaries Lemma

Let
$$V = \sum_{i} \alpha_{i} U_{i}$$
, $\text{c-U} = \sum_{i} |i\rangle\langle i| \otimes U_{i}$, and $\text{Ref}(|b\rangle) = I - 2|b\rangle\langle b|$.
We can create $\frac{V|b\rangle}{||V|b\rangle||}$ with $O\left(\frac{||\alpha||_{1}}{||V|b\rangle||}\right)$ uses of c-U and $\text{Ref}(|b\rangle)$.

Strategy: Express $V = A^{-1}$ as a linear combination of easy-toperform unitaries.

Linear combination of unitaries

Corollary: If $A^{-1} = \sum_i \alpha_i U_i$, we can prepare $|x\rangle = \frac{A^{-1}|b\rangle}{\|A^{-1}|b\rangle\|}$ with $O(\|\alpha\|_1)$ uses of c-U and Ref($|b\rangle$).

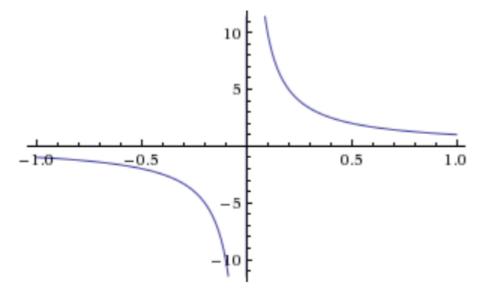
Choices for U_i :

- 1. Use $\exp(-iAt)$: $A^{-1} = \sum_t \alpha_t \exp(-iAt)$ Implement $\exp(-iAt)$ using Hamiltonian simulation We call this the Fourier approach
- 2. Use $T_n\left(\frac{A}{d}\right)$, where $T_n(\cdot)$ is the nth Chebyshev polynomial Implement using quantum walk [Szegedy04, Childs10] We call this the Chebyshev approach

Fourier approach

Goal: Express $A^{-1} = \sum_t \alpha_t \exp(-iAt)$

Equivalent to expressing $x^{-1} = \sum_t \alpha_t \exp(-ixt)$



Function blows up at origin ⇒ no Fourier series expansion

Only needs to work in domain
$$D_{\kappa} = \left[-1, -\frac{1}{\kappa}\right] \cup \left[+\frac{1}{\kappa}, +1\right]$$
.

Fourier approach

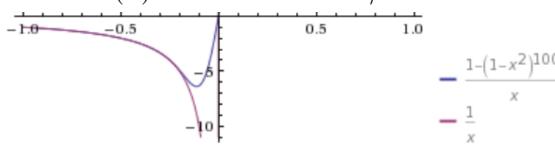
Goal: Express
$$x^{-1} = \sum_t \alpha_t \exp(-ixt)$$
 on $D_{\kappa} = \left[-1, -\frac{1}{\kappa}\right] \cup \left[\frac{1}{\kappa}, 1\right]$

Lemma 11. Let the function h(x) be defined as

$$h(x) := \frac{i}{\sqrt{2\pi}} \sum_{j=0}^{J-1} \delta_y \sum_{k=-K}^{K} \delta_z \, z_k e^{-z_k^2/2} e^{-ixy_j z_k},$$

where $y_j := j\delta_y$, $z_k := k\delta_z$, for some $J = \Theta(\frac{\kappa}{\epsilon} \log(\kappa/\epsilon))$, $K = \Theta(\kappa \log(\kappa/\epsilon))$, $\delta_y = \Theta(\epsilon/\sqrt{\log(\kappa/\epsilon)})$ and $\delta_z = \Theta((\kappa\sqrt{\log(\kappa/\epsilon)})^{-1})$.

Then h(x) is is ϵ -close to 1/x on the domain D_{κ} .



Chebyshev approach

Goal: Express
$$A^{-1} = \sum_{n} \alpha_n T_n \left(\frac{A}{d}\right)$$
.

Equivalent to expressing $x^{-1} = \sum_{n} \alpha_n T_n \left(\frac{x}{d}\right)$.

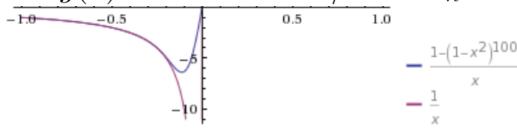
$$1-(1-x^2)^{100}$$

Lemma 14. Let g(x) be defined as

$$g(x) := 4 \sum_{j=0}^{j_0} (-1)^j \left[\frac{\sum_{i=j+1}^b {2b \choose b+i}}{2^{2b}} \right] \mathcal{T}_{2j+1}(x),$$

where $j_0 = 2\sqrt{b\log(4b/\epsilon)}$ and $b = \kappa^2 \log(\kappa/\epsilon)$. Then g(x) is 2ϵ close to 1/x on D

Then g(x) is 2ϵ -close to 1/x on D_{κ} .



Summary

Known [HHL09]: Quantum algorithm to solve* (to error ϵ) a system of $N \times N$ linear equations* Running time is poly(log N, $1/\epsilon$)

Our result: Running time can be improved to poly(log N, log(1/ ϵ)) for the same problem

Comparison of approaches

Fourier approach

- 1. Uses Hamiltonian simulation as a black box, hence more general
- 2. Less efficient
- 3. Easier to understand?

Chebyshev approach

- 1. Uses a discrete-time quantum walk, which requires matrix entries of A, hence less general
- 2. More efficient
- 3. Easier to understand?

Open problems

- Find applications of QLSP!!
- What other functions of a matrix A can we implement?
 - Chebyshev polynomial of A
 - $\circ \exp(iAt)$
 - o ???

Discrete-time quantum walk for A

Let *A* be *d*-sparse with largest entry 1.

$$|\psi_j\rangle := |j\rangle \otimes \frac{1}{\sqrt{d}} \sum_{k \in [N]} \left(\sqrt{A_{jk}^*} |k\rangle + \sqrt{1 - |A_{jk}|} |k + N\rangle \right)$$

$$T := \sum_{j \in [N]} |\psi_j\rangle\langle j|$$

$$W := S(2TT^{\dagger} - 1)$$

$$W^{n} = \begin{pmatrix} \mathcal{T}_{n}(A/d) & -\sqrt{1 - (A/d)^{2}} \mathcal{U}_{n-1}(A/d) \\ \sqrt{1 - (A/d)^{2}} \mathcal{U}_{n-1}(A/d) & \mathcal{T}_{n}(A/d) \end{pmatrix}$$