Quantum strategic game theory

Shengyu Zhang

The Chinese University of Hong Kong

Why we are here?

- Understanding the power of quantum
 - Computation: quantum algorithms/complexity
 - Communication: quantum info. theory
 - **...**

This work: game theory

Game: Two basic forms



strategic (normal) form

extensive form

Game: Two basic forms

strategic (normal) form

- n players: P₁, ..., P_n
- P_i has a set S_i of strategies
- P_i has a utility function u_i : $S \rightarrow \mathbb{R}$

Nash equilibrium

 Nash equilibrium: each player has adopted an optimal strategy, provided that others keep their strategies unchanged

Nash equilibrium

Pure Nash equilibrium: a joint strategy s = (s₁, ..., s_n) s.t. ∀i, u_i(s_i,s_{-i}) ≥ u_i(s_i',s_{-i})

(Mixed) Nash equilibrium (NE):
 a product distribution p = p₁ × ... × p_p s.t. ∀i,s_i'
 E_{s←p}[u_i(s_i,s_{-i})] ≥ E_{s←p}[u_i(s_i',s_{-i})]

Correlated equilibrium

- CE = NE ∩ {product distributions}

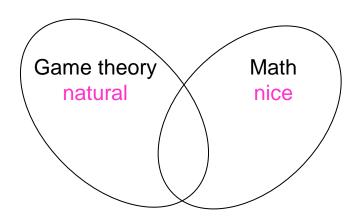
Why correlated equilibrium?

Traffic Light

	Cross	Stop
Cross	-100 -100	
Stop	10	0

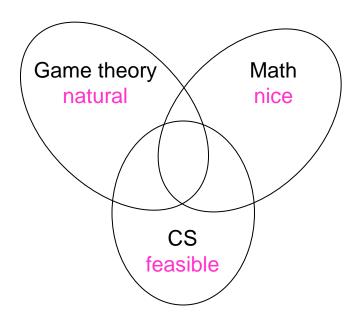
- 2 pure NE: one crosses and one stops. Payoff: (0,1) or (1,0)
 - Bad: unfair.
- 1 mixed NE: both cross w.p. 1/101.
 - Good: Fair
 - Bad: Low payoff: both ≈ 0.0001
 - Worse: Positive chance of crash
- CE: (Cross,Stop) w.p. ½, (Stop,Cross) w.p. ½
 - □ Fair, high payoff, 0 chance of crash.

Why correlated equilibrium?



- Set of correlated equilibria is convex.
- The NE are vertices of the CE polytope (in any nondegenerate 2-player game)
- All CE in graphical games can be represented by ones as product functions of each neighborhood.

Why correlated equilibrium?



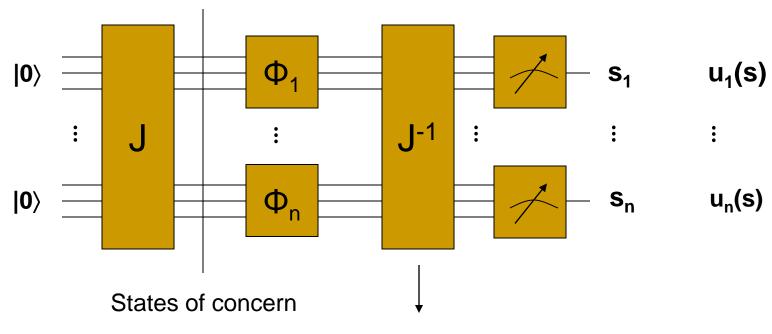
- [Obs] A CE can found in poly. time by LP.
- natural dynamics → approximate CE.
- A CE in graphical games can be found in poly. time.

"quantum games"

Non-local games

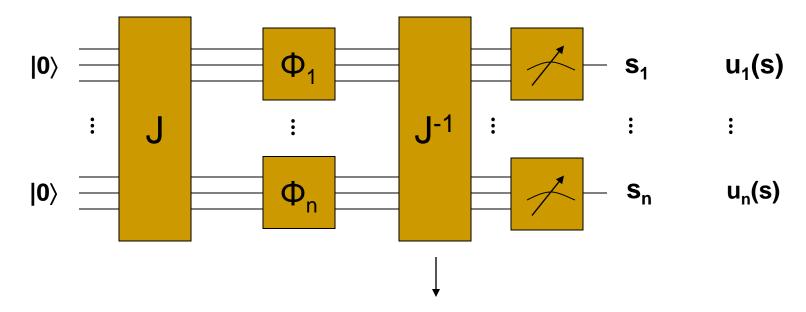
- EWL-quantization of strategic games
 - J. Eisert, M. Wilkens, M. Lewenstein, *Phys. Rev. Lett.*, 1999.
- Others
 - Meyer's Penny Matching
 - Gutoski-Watrous framework for refereed game

EWL model



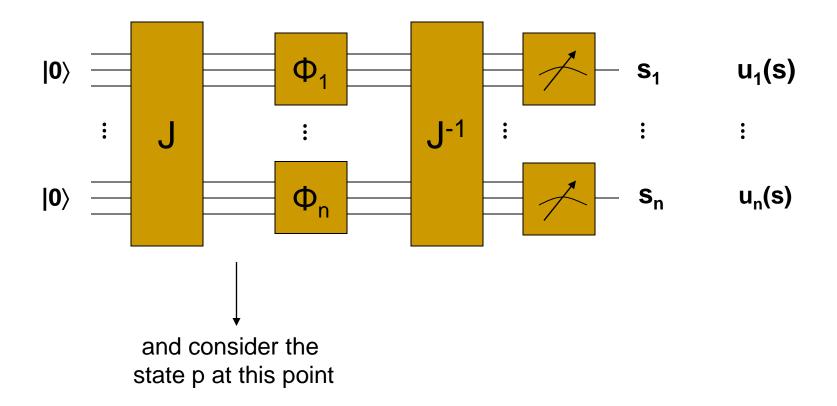
What's this classically?

EWL model

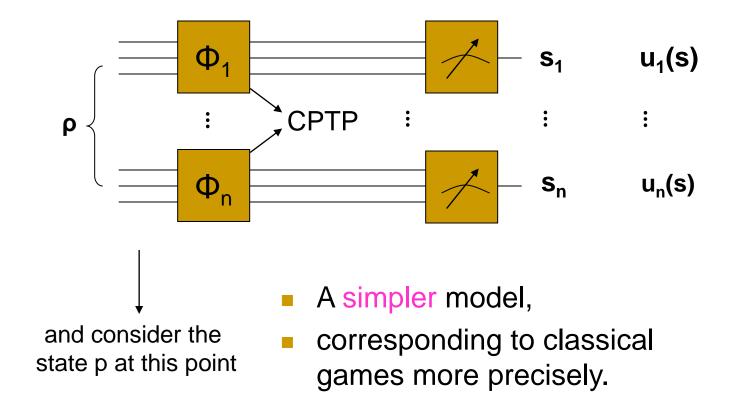


Classically we don't undo the sampling (or do any re-sampling) after players' actions.

EWL model



Our model



Other than the model

Main differences than previous work in quantum strategic games:

- We consider general games of growing sizes.
 - Previous: specific games, usually 2*2 or 3*3
- We study quantitative questions.
 - Previous work: advantages exist?
 - Ours: How much can it be?

Central question: How much "advantage" can playing quantum provide?

- Measure 1: Increase of payoff
- Measure 2: Hardness of generation

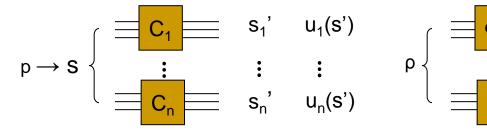
First measure: increase of payoff

 We will define natural correspondences between classical distributions and quantum states.

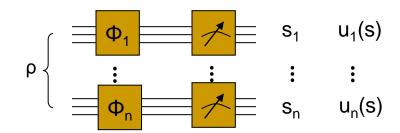
And examine how well the equilibrium property is preserved.

Quantum equilibrium

classical



quantum



classical equilibrium:

No player wants to do anything to the assigned strategy s_i , if others do nothing on their parts

- $p = p_1 \times ... \times p_n$: Nash equilibrium
- general p: correlated equilibrium

quantum equilibrium:

No player wants to do anything to the assigned strategy $\rho|_{Hi}$, if others do nothing on their parts

- $-\rho = \rho_1 \times ... \times \rho_n$: quantum Nash equilibrium
- general p: quantum correlated equilibrium

Correspondence of classical and quantum states

classical

$$p \rightarrow S \left\{ \begin{array}{c} \blacksquare & C_1 \\ \vdots & \vdots \\ \hline & C_n \\ \hline & \vdots \\ \end{array} \right. S_n'$$

$$p: p(s) = \rho_{ss}$$

(measure in comp. basis)

quantum

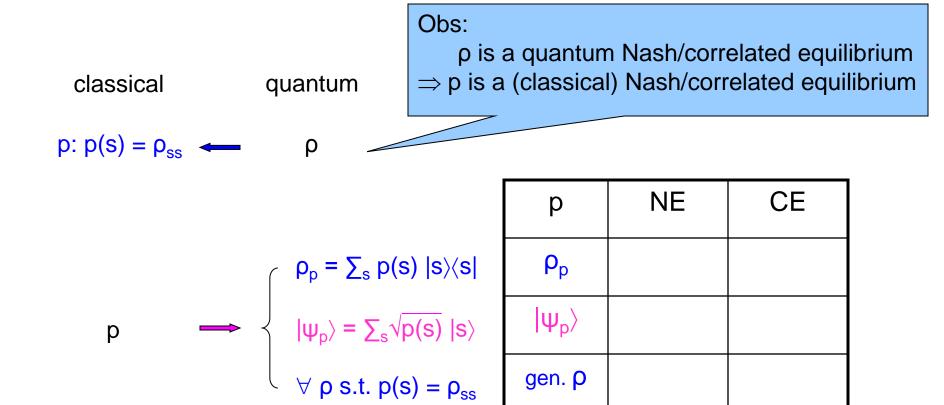
$$\rho \left\{ \begin{array}{c|c} \Phi_1 & \nearrow & S_1 \\ \hline \Phi_n & \nearrow & S_r \end{array} \right.$$

$$\rho_p = \sum_s p(s) |s\rangle\langle s|$$
 (classical mixture)

$$\begin{cases} \rho_p = \sum_s p(s) |s\rangle\langle s| \text{ (classical mixture)} \\ |\psi_p\rangle = \sum_s \sqrt{p(s)} |s\rangle \text{ (quantum superposition)} \\ \forall \ \rho \text{ s.t. } p(s) = \rho_{ss} \text{ (general class)} \end{cases}$$

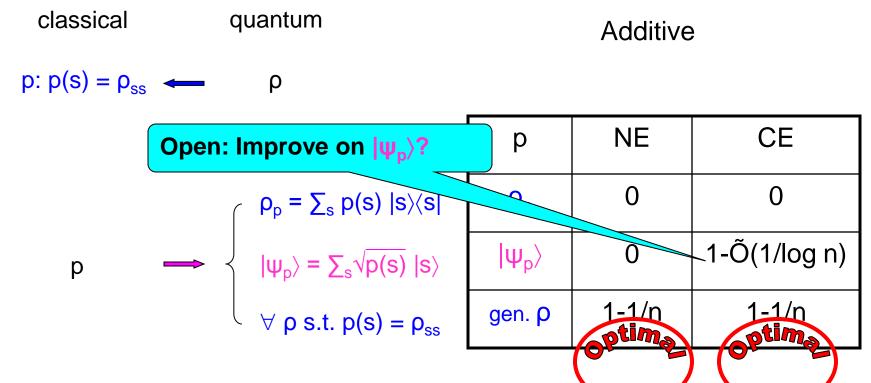
$$\forall \rho \text{ s.t. } p(s) = \rho_{ss} \text{ (general class)}$$

Preservation of equilibrium?



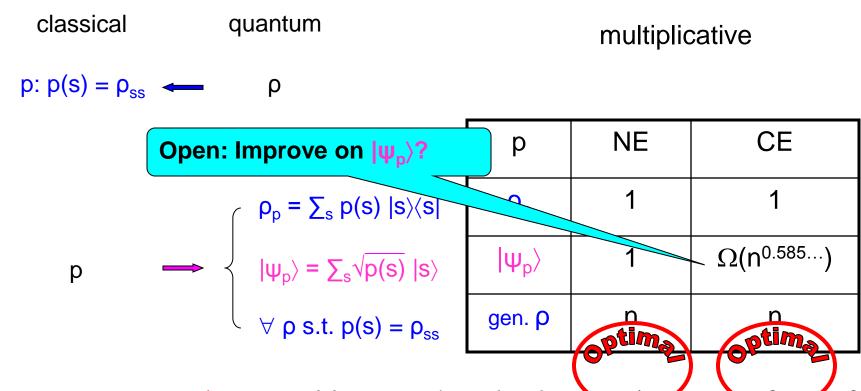
Question: Maximum additive and multiplicative increase of payoff (in a [0,1]-normalized game)?

Maximum additive increase



Question: Maximum additive and multiplicative increase of payoff (in a [0,1]-normalized game)?

Maximum multiplicative increase



Question: Maximum additive and multiplicative increase of payoff (in a [0,1]-normalized game)?

Optimization

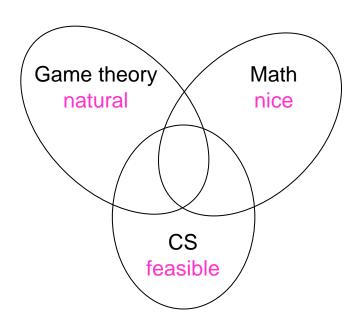
- The maximum increase of payoff on $|\psi_p\rangle$ for a CE p.
 - \neg $\sqrt{p_j}$ is short for the column vector $(\sqrt{p_{1j}}, ..., \sqrt{p_{nj}})^T$.

Small n and general case

- n=2:
 - □ Additive: $(1/\sqrt{2}) 1/2 = 0.2071...$
 - Multiplicative: 4/3.
- n=3:
 - \square Additive: 8/9 1/2 = 7/18 = 0.3888...
 - Multiplicative: 16/9.
- General n:
 - Tensor product
 - Carefully designed base case

Second measure: hardness of generation

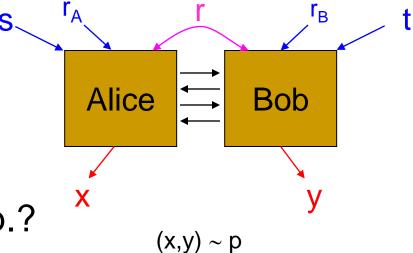
- Why care about generation?
- Recall the good properties of CE.
- But someone has to generate the correlation.



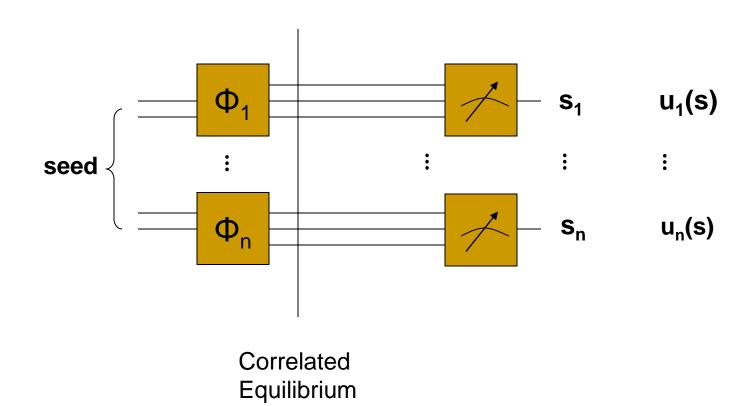
- Also very interesting on its own
 - Bell's inequality

Correlation complexity

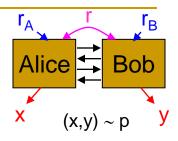
- Two players want to share a correlation.
- Need: shared resource or communication.
- Nonlocality? Comm. Comp.?
 - No private inputs here!
- Corr(p) = min shared resource needed
 - QCorr(p): entanglement
 RCorr(p): public coins
- Comm(p) = min communication needed
 - QComm(p): qubitsRComm(p): bits



Correlation complexity back in games



Correlation complexity



- Question: Does quantum entanglement have advantage over classical randomness in generating correlation?
 size(p) = length of string (x,y)
- [Obs] Comm(p) ≤ Corr(p) ≤ size(p)
 - Right inequality: share the target correlation.
- So unlike non-local games, one can always simulate the quantum correlation by classical.
- The question is the efficiency.

complexity-version of Bell's Theorem

Separation

```
[Conj] A random with

[Thm]  = [Thm] / E p = (X,Y)  of size n,  = s.t. 

QCorr(p) = 1, RComm(p)  = s.t.
```

Tools: rank and nonnegative rank

- rank(M) = min {r: $M = \sum_{k=1...r} M_k$, rank(M_k)=1}
- Nonnegative rank (of a nonnegative matrix):
 rank₊(M) = min {r: M = ∑_{k=1...r} M_k, rank(M_k)=1, M_k ≥ 0}
 - Extensively-studied in linear algebra and engineering. Many connections to (T)CS.

Explicit instances

Euclidean Distance Matrix (EDM):

$$Q(i,j) = C_i - C_j$$

where $c_1, ..., c_N \in \mathbb{R}$.

- \neg rank(Q) = 2.
- □ [Thm, BL09] $\operatorname{rank}_+(Q \circ Q) \ge \log_2 N$
- □ [Conj, BL09] rank₊(Q∘Q) = N.
 (Even existing one Q implies 1 vs. n separation, the strongest possible)

Conclusion

- Model: natural, simple, rich
 - Non-convex programming; rank₊; comm. comp.
- Next direction
 Improve the bundle in the last of the
 - Efficient testing of QNE/QCE?
 - □ QCE ← natural quantum dynamics?
 - Approximate Correlation complexity
 - [Shi-Z] $\exists p$: QCorr_{ϵ}(p) = $O(\log n)$, RComm_{ϵ}(p) = $\Omega(\sqrt{n})$
 - Characterize QCorr?
 - Mutual info? No! $\exists p: I_p = O(n^{-1/4}), QCorr(p) = O(\log n)$

General n

- Construction: Tensor product.
- [Lem]

game	(u ₁ ,u ₂)	(u ₁ ',u ₂ ')	\rightarrow $(u_1 \times u_1', u_2 \times u_2')$
CE	р	p'	→ p ×p'
old u.	$u_1(\psi_p\rangle) = u$	$u_1(\psi_{p'}\rangle) = u'$	⇒ u·u'
new utility	$u_1(\Phi \psi_p\rangle)$ = u_{new}	$u_1(\Phi' \psi_{p'}\rangle)$ = u'_{new}	\Rightarrow u ₁ ((Φ⊗Φ')(ψ _p ⟩⊗ ψ _{p'} ⟩)) = u _{new} u' _{new}

Base case: additive increase

- Using the result of n=2?
 - □ Additive: $\varepsilon_2^{\log_2(n)} \varepsilon_1^{\log_2(n)} = 1/\text{poly(n)}$.
- Need: ε₂ and ε₁ very close to 1, yet still admitting a gap of ≈ 1 when taking power.
- New construction: $P = \frac{\sin^2(2) \operatorname{sin}^2(2)}{0 \operatorname{cos}^4(2)}$ New $u = (1; \sin^4(2))\log_2 n$ $= 1; O(1 = \log n)$ $U_1 = \frac{\cos(2)}{\sin(2)} \operatorname{cos}^2(2) = O(1 = \log n)$

Worse than constant