

ON THE ADDITIVE AND MULTIPLICATIVE ADVERSARY METHODS

L. Magnin (U. Paris 11, U. Brussels, NEC Labs)

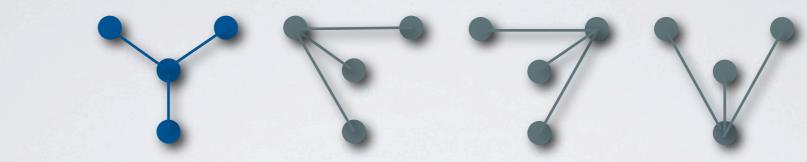
M. Roetteler (NEC Labs)

J. Roland (NEC Labs)

QIP'II, Singapore, I.II.II

[Folklore] One way to solve Graph Isomorphism

Create the uniform superposition on permuted graphs



Example:
$$\frac{1}{\sqrt{N!}} \sum_{\pi \in S_N} |G^{\pi}\rangle$$

[Folklore] One way to solve Graph Isomorphism

Create the uniform superposition on permuted graphs

[Folklore] One way to solve Graph Isomorphism

Create the uniform superposition on permuted graphs

Time Complexity?

- Open question (exponential upper bound)
- Let's try something simpler: query complexity

[Folklore] One way to solve Graph Isomorphism

Create the uniform superposition on permuted graphs

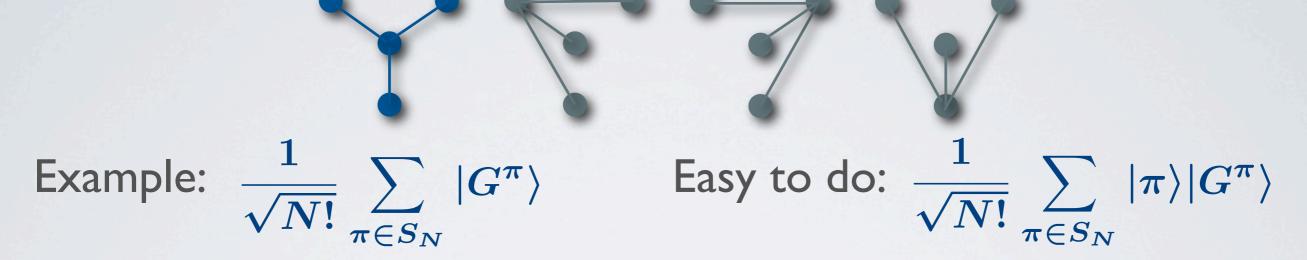
Time Complexity?

- Open question (exponential upper bound)
- Let's try something simpler: query complexity

$$f$$
 injective $[N] o [M]$ $rac{1}{\sqrt{N}}\sum_{x\in[N]}|f(x)
angle rac{1}{\sqrt{N}}\sum_{x\in[N]}|x
angle|f(x)
angle$

[Folklore] One way to solve Graph Isomorphism

Create the uniform superposition on permuted graphs



Time Complexity?

- Open question (exponential upper bound)
- Let's try something simpler: query complexity

INDEX ERASURE PROBLEM [Shi'02]

Given an injective function $f:[N] \longrightarrow [M]$ as an oracle create the state $|\psi_f^{\odot}\rangle = \frac{1}{\sqrt{N}}\sum_{x\in[N]}|f(x)\rangle$

QUERY COMPLEXITY

OUANTUM STATE GENERATION PROBLEM

Given a function $f \in F$ as an oracle $O_f: |x\rangle |s\rangle \mapsto |x\rangle |f(x) \oplus s\rangle$ create a state ε -close to a target state $|\psi_f^{\odot}\rangle$

 $Q_{\varepsilon}(\psi)$ Minimal number of queries that solve the problem over all algorithms.

QUANTUM PROBLEMS

Example: Index Erasure

CLASSICAL PROBLEMS (Tutorial by Ben Reichardt)

Creating $|\psi_f\rangle$ is computing a function

Example: search $\psi_f = \bigoplus f(x_i)$

QUERY COMPLEXITY

OUANTUM STATE GENERATION PROBLEM

Given a function $f \in F$ as an oracle $O_f: |x\rangle |s\rangle \mapsto |x\rangle |f(x) \oplus s\rangle$ create a state ε -close to a target state $|\psi_f^{\odot}\rangle$

 $Q_{\varepsilon}(\psi)$ Minimal number of queries that solve the problem over all algorithms.

QUANTUM PROBLEMS

Example: Index Erasure

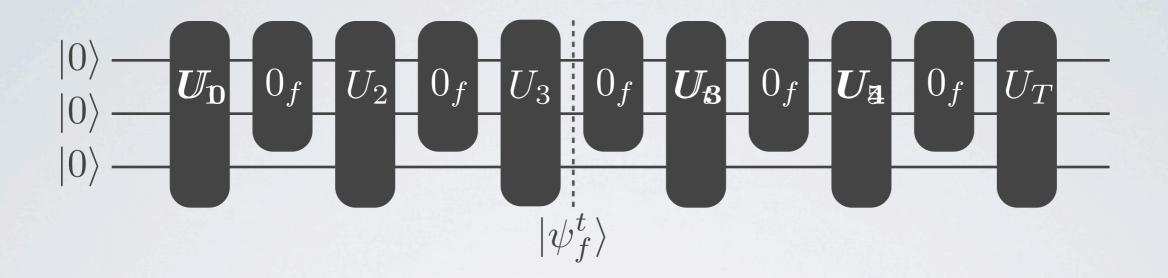
ioint work with Ambainis

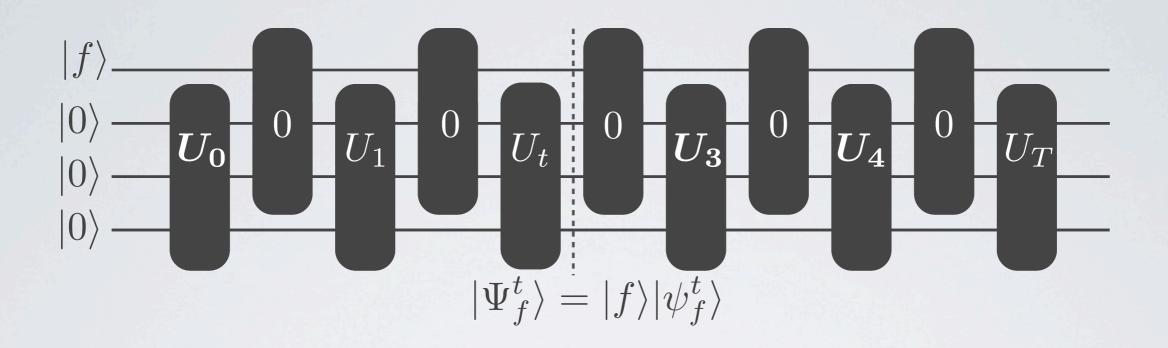
Complexity $\Theta(\sqrt{N})$

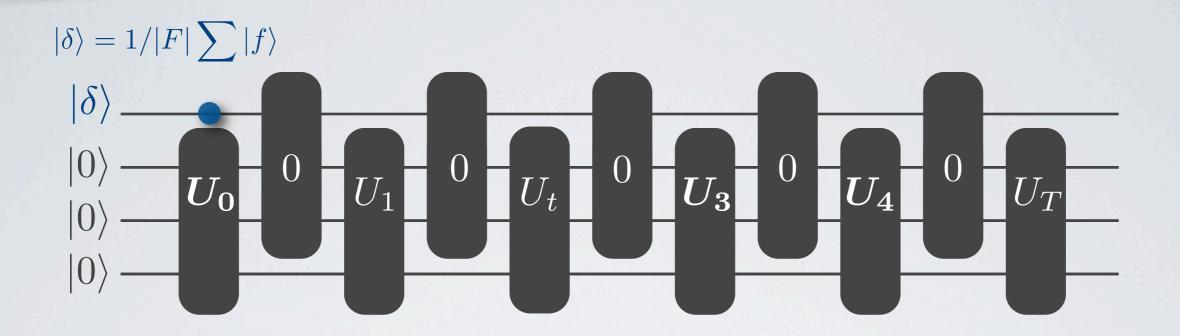
CLASSICAL PROBLEMS (Tutorial by Ben Reichardt)

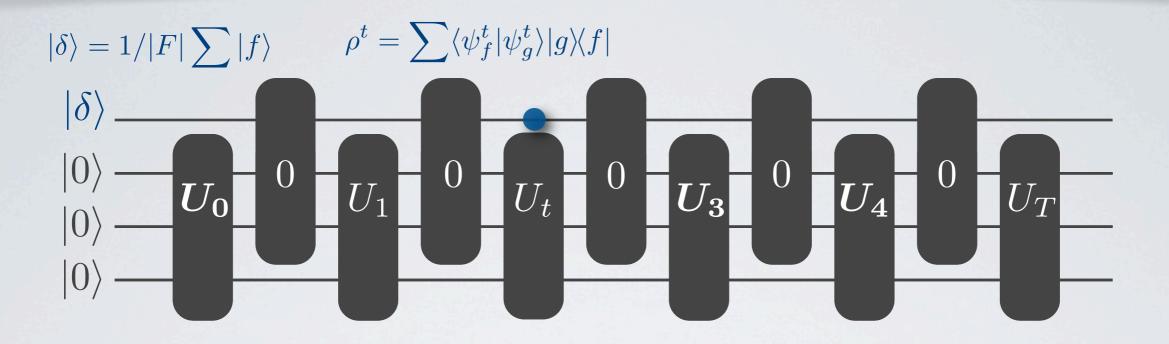
Creating $|\psi_f\rangle$ is computing a function

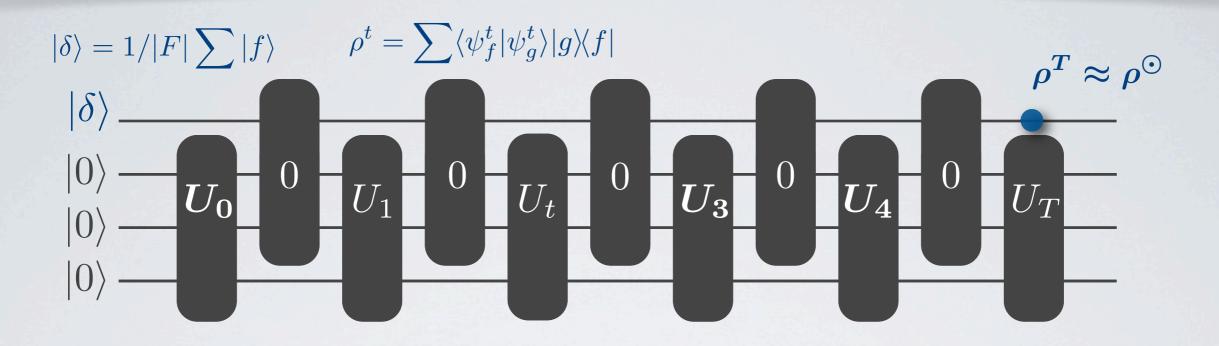
Example: search $\psi_f = \bigoplus f(x_i)$

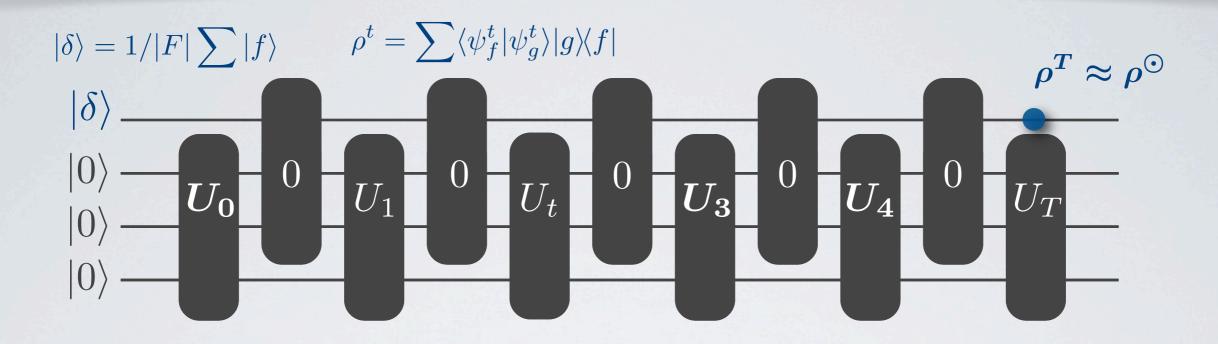




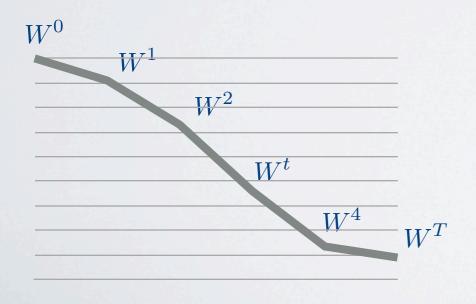






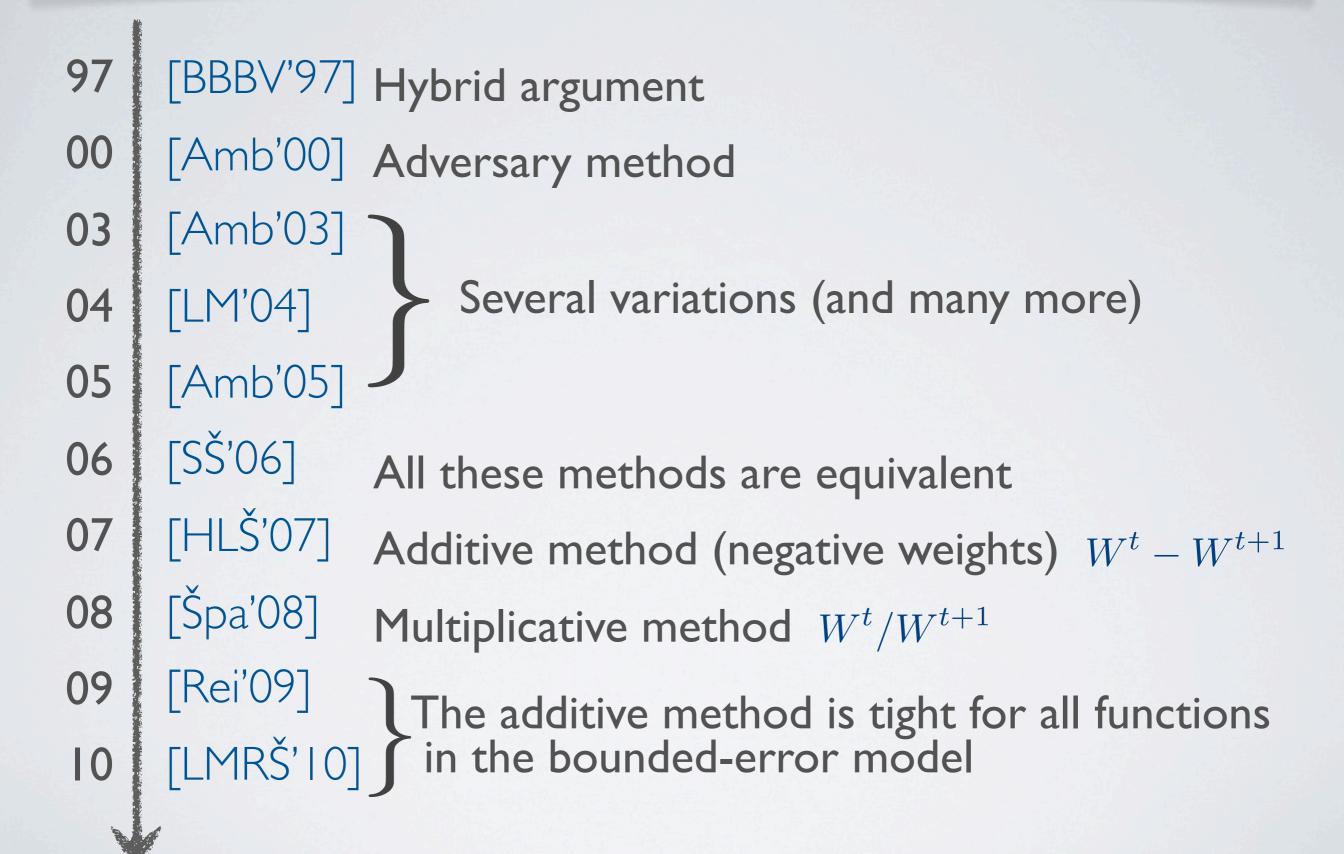


Progress function
$$W^t = \sum \Gamma_{fg} \langle \psi_f^t | \psi_g^t
angle = \mathrm{tr}[\Gamma
ho^t]$$



- Initial value (high)
- Progress done by one query (limited)
- Final value (low, depends on the success probability)

ADVERSARIES FOR CLASSICAL PROBLEMS

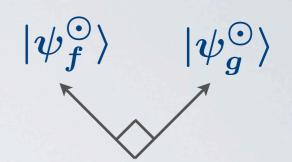


$$W^t = ext{tr}[\Gamma
ho^t] = \sum \Gamma_{\!f\!g} \langle \psi_f^t | \psi_g^t
angle$$

For computing functions (classical):

Conditions on Γ : $\mathbf{0}$ definite positive

$${f 2} \; \Gamma_{fg} = 0 \; \; {
m when} \; \ket{\psi_f^{\odot}} = \ket{\psi_g^{\odot}}$$

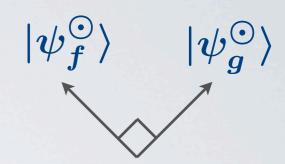


$$W^t = ext{tr}[\Gamma
ho^t] = \sum \Gamma_{\!f\!g} \langle \psi_f^t | \psi_g^t
angle$$

For computing functions (classical):

Conditions on Γ : $\mathbf{0}$ definite positive

$$\mathbf{2} \ \mathrm{tr}[\Gamma(
ho^{\odot} \circ M)] = 0, \ orall M$$

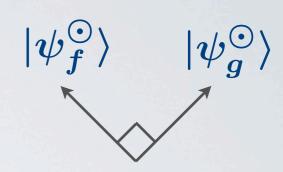


$$W^t = ext{tr}[\Gamma
ho^t] = \sum \Gamma_{\!f\!g} \langle \psi_f^t | \psi_g^t
angle$$

For computing functions (classical):

Conditions on Γ : $\mathbf{0}$ definite positive

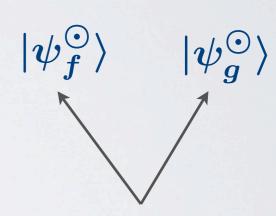
2
$$\operatorname{tr}[\Gamma(\rho^{\odot} \circ M)] = 0, \ \forall M$$



[this work]

For quantum state generation:

non-orthogonal output states



ADDITIVE METHOD:

Conditions on Γ : 1 definite positive

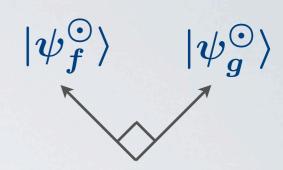
$$2 \operatorname{tr}[\Gamma(\rho^{\odot} \circ M)] = 0, \ \forall M \succeq 0, M_{ii} = 1$$

$$W^t = ext{tr}[\Gamma
ho^t] = \sum \Gamma_{\!f\!g} \langle \psi_f^t | \psi_g^t
angle$$

For computing functions (classical):

Conditions on Γ : $\mathbf{0}$ definite positive

2
$$\operatorname{tr}[\Gamma(\rho^{\odot} \circ M)] = 0, \ \forall M$$



[this work]

For quantum state generation:

non-orthogonal output states

$|\psi_{f}^{\odot}\rangle$ $|\psi_{g}^{\odot}\rangle$ too restrictive for small success probability

ADDITIVE METHOD:

Conditions on Γ : 1 definite positive

2
$$\operatorname{tr}[\Gamma(\rho^{\odot} \circ M)] = 0, \ \forall M \succeq 0, M_{ii} = 1$$

Eigenvalues of Γ

Conditions on Γ , hybrid method $\Gamma \preceq II$

Eigenvalues of Γ

$$\Gamma \preceq II$$

$$\Gamma |\delta
angle = |\delta
angle$$

Overlap of
$$ho^0$$
 and Γ

Eigenvalues of Γ

1 ------

Conditions on Γ , hybrid method

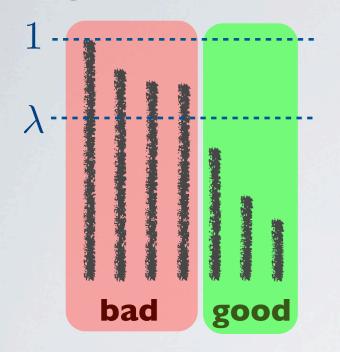
$$\Gamma \preceq II$$

$$\Gamma |\delta
angle = |\delta
angle$$

Overlap of ho^0 and Γ

Overlap of ho^\odot and Γ

Eigenvalues of Γ



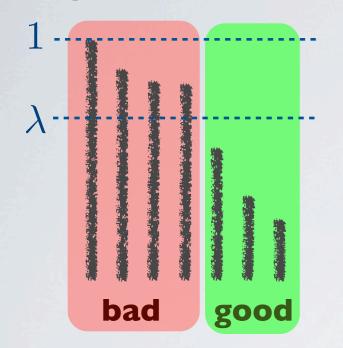
 $egin{aligned} \Gamma & \preceq I\!\!I \ \Gamma |\delta
angle = |\delta
angle \ \mathrm{tr}[\Pi_{\mathrm{bad}}(
ho^{\odot} \circ M)] \leq \eta \end{aligned}$

Conditions on Γ , hybrid method

Overlap of ρ^0 and Γ

Overlap of ho^\odot and Γ

Eigenvalues of Γ



Overlap of ρ^0 and Γ

Overlap of ho^{\odot} and Γ

Conditions on Γ , hybrid method

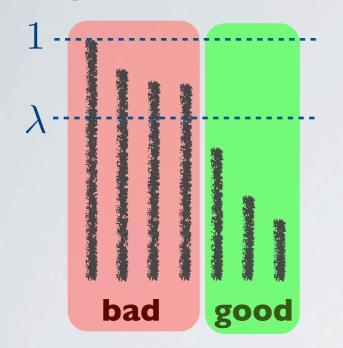
$$egin{aligned} \Gamma & \preceq I\!\!I \ \Gamma |\delta
angle = |\delta
angle \ \mathrm{tr}[\Pi_{\mathrm{bad}}(
ho^{\odot} \circ M)] \leq \eta \end{aligned}$$

Initial value: $W^0 = 1$

Final value: $W^T \leq (1 - \lambda)(\sqrt{1 - \varepsilon} - \sqrt{\eta})^2$

Progress: $|W^{t+1} - W^t| \leq \max_x ||\Gamma_x - \Gamma||$

Eigenvalues of Γ



Overlap of ρ^0 and Γ

Overlap of ho^\odot and Γ

Conditions on Γ , hybrid method

$$\Gamma \preceq II$$

$$\Gamma |\delta
angle = |\delta
angle$$

$$\operatorname{tr}[\Pi_{\mathrm{bad}}(\rho^{\odot} \circ M)] \leq \eta$$

Initial value: $W^0 = 1$

Final value: $W^T \leq (1 - \lambda)(\sqrt{1 - \varepsilon} - \sqrt{\eta})^2$

Progress: $|W^{t+1} - W^t| \leq \max_x ||\Gamma_x - \Gamma||$

THEOREM

 $MADV_{\epsilon} \ge ADV_{\epsilon}^{Hyb} \ge ADV_{\epsilon}^{\pm} / 60$

SYMMETRIZATION

2 technical difficulties:

- Designing a « good » adversary matrix
- ullet Computing the norm $||\Gamma_x \Gamma||$

Solution:

Using the symmetries of the problem

Index Erasure:
$$|\psi_f^{\odot}\rangle = \frac{1}{\sqrt{N}} \sum_{x \in [N]} |f(x)\rangle$$
 $f:[N] \mapsto [M]$

SYMMETRIZATION

2 technical difficulties:

- Designing a « good » adversary matrix
- ullet Computing the norm $||\Gamma_x \Gamma||$

Solution:

Using the symmetries of the problem

Index Erasure:
$$|\psi_f^{\odot}\rangle = \frac{1}{\sqrt{N}} \sum_{x \in [N]} |f(x)\rangle$$
 $f:[N] \mapsto [M]$

Invariant by permutations of the inputs $\forall \pi \in S_N, |\psi_{f\circ\pi}^{\odot}\rangle = |\psi_f^{\odot}\rangle$

SYMMETRIZATION

2 technical difficulties:

- Designing a « good » adversary matrix
- Computing the norm $||\Gamma_x \Gamma||$

Solution:

Using the symmetries of the problem

Index Erasure:
$$|\psi_f^{\odot}\rangle = \frac{1}{\sqrt{N}} \sum_{x \in [N]} |f(x)\rangle$$
 $f:[N] \vdash$

 $f:[N]\mapsto [M]$

The circuit should have this symmetry

Invariant by permutations of the inputs $\forall \pi \in S_N, |\psi_{f\circ\pi}^{\odot}\rangle = |\psi_f^{\odot}\rangle$

 π permutation on the inputs

 $f_{\pi,\tau}=\tau\circ f\circ \pi$

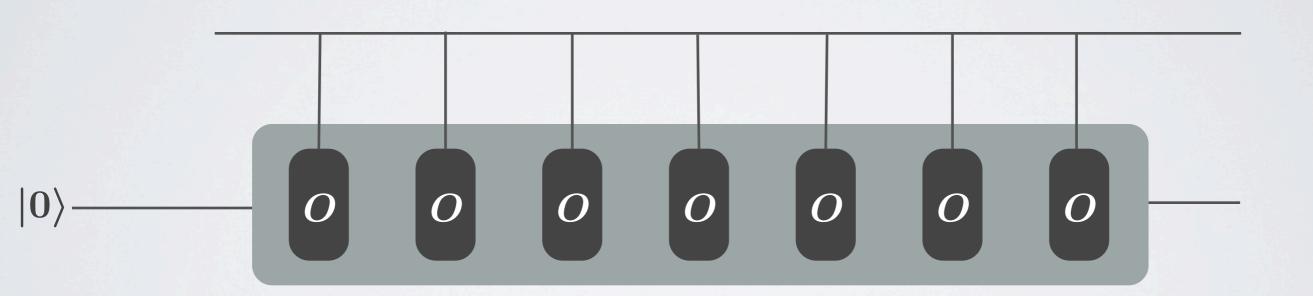
τ permutation on the outputs

 $|U_{\pi au}|f
angle=|f_{\pi au}
angle$

<u>AUTOMORPHISM GROUP G [HLŠ'07]</u>

$$\forall (\pi, \tau) \in G, \ \forall f \in F, f_{\pi\tau} \in F$$

$$orall (\pi, au)\in G$$
 there exists a unitary $V_{\pi au}|\psi_f^\odot
angle=|\psi_{f_{\pi au}}^\odot
angle$



 π permutation on the inputs

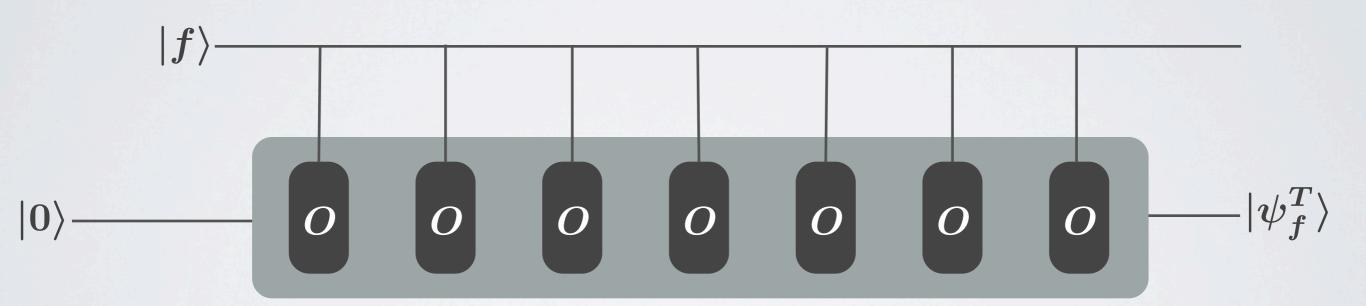
 $f_{\pi,\tau}=\tau\circ f\circ \pi$ $|U_{\pi au}|f
angle=|f_{\pi au}
angle$

τ permutation on the outputs

<u>AUTOMORPHISM GROUP G [HLŠ'07]</u>

$$orall (\pi, au) \in G, \; orall f \in F, f_{\pi au} \in F$$

 $orall (\pi, au)\in G$ there exists a unitary $V_{\pi au}|\psi_f^{\odot}
angle=|\psi_{f_{\pi au}}^{\odot}
angle$



 π permutation on the inputs

 $f_{\pi, au}= au\circ f\circ \pi$

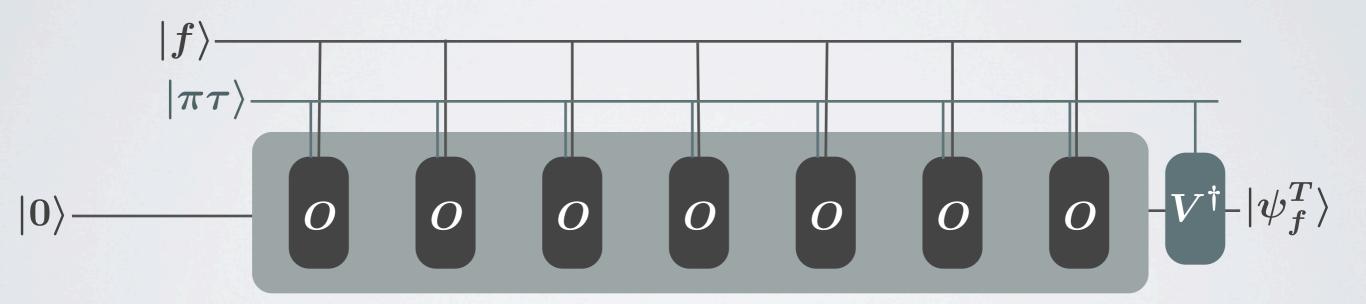
τ permutation on the outputs

 $U_{\pi au}|f
angle=|f_{\pi au}
angle$

AUTOMORPHISM GROUP G [HLŠ'07]

$$\forall (\pi, au) \in G, \ \forall f \in F, f_{\pi au} \in F$$

 $orall (\pi, au)\in G$ there exists a unitary $V_{\pi au}|\overline{\psi_f^{\odot}}
angle=|\overline{\psi_{f_{\pi au}}^{\odot}}
angle$



 π permutation on the inputs

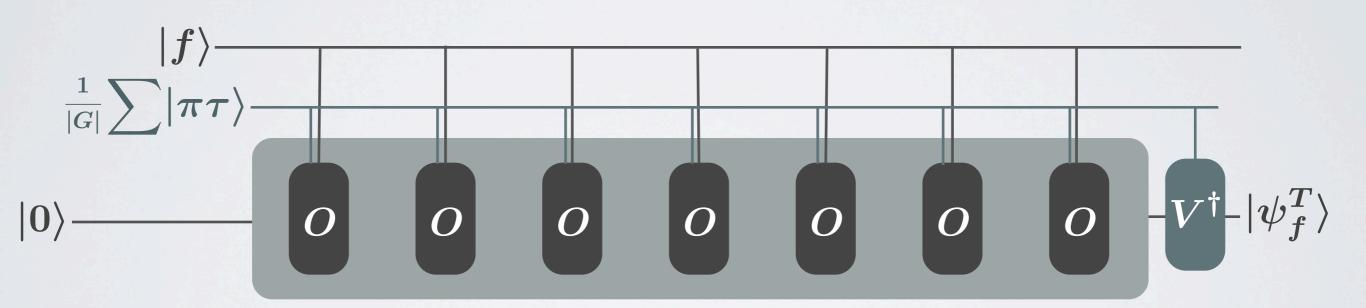
 $f_{\pi, au}= au\circ f\circ\pi$ $|U_{\pi au}|f
angle=|f_{\pi au}
angle$

τ permutation on the outputs

AUTOMORPHISM GROUP G [HLŠ'07]

 $orall (\pi, au) \in G, \; orall f \in F, f_{\pi au} \in F$

 $orall (\pi, au) \in G$ there exists a unitary $V_{\pi au} |\psi_f^{\odot}
angle = |\psi_{f_{\pi au}}^{\odot}
angle$



 π permutation on the inputs

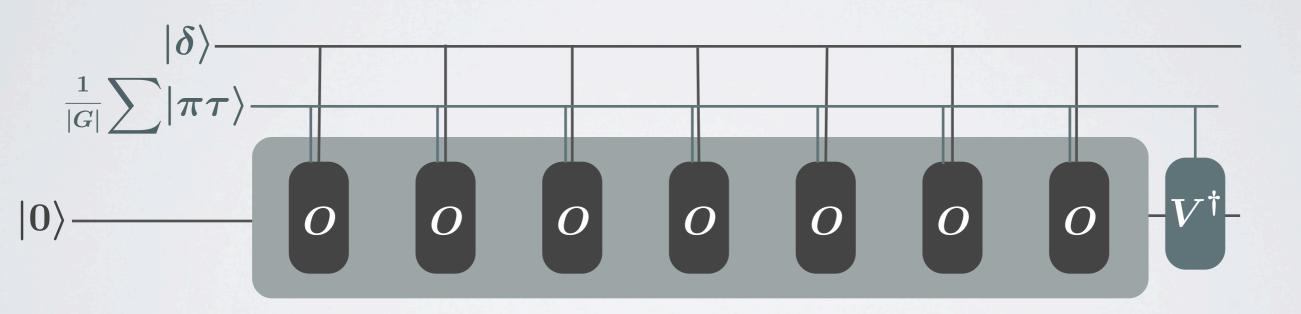
 $f_{\pi,\tau}=\tau\circ f\circ \pi$ $|U_{\pi au}|f
angle=|f_{\pi au}
angle$

τ permutation on the outputs

AUTOMORPHISM GROUP G [HLŠ'07]

$$orall (\pi, au) \in G, \; orall f \in F, f_{\pi au} \in F$$

 $orall (\pi, au) \in G$ there exists a unitary $V_{\pi au} |\psi_f^{\odot}
angle = |\psi_{f_{\pi au}}^{\odot}
angle$



 π permutation on the inputs

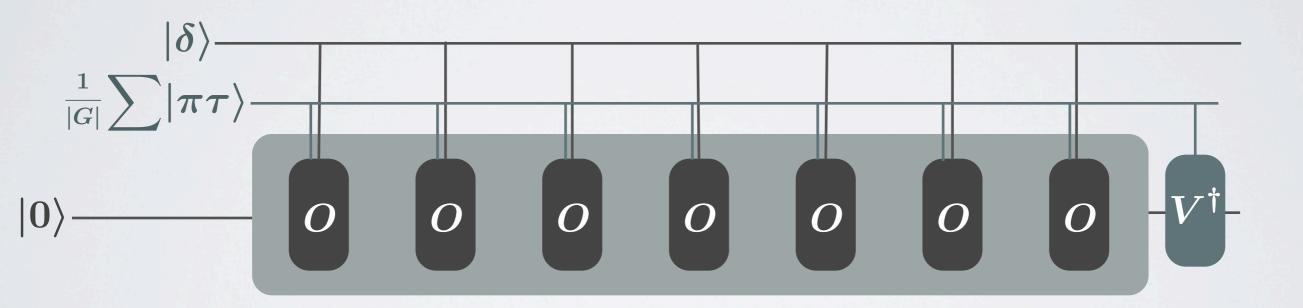
 $f_{\pi, au}= au\circ f\circ\pi$ $|U_{\pi au}|f
angle=|f_{\pi au}
angle$

 τ permutation on the outputs

<u>AUTOMORPHISM GROUP G [HLŠ'07]</u>

$$orall (\pi, au) \in G, \; orall f \in F, f_{\pi au} \in F$$

 $orall (\pi, au)\in G$ there exists a unitary $\overline{V_{\pi au}|\psi_f^{\odot}}
angle=|\psi_{f_{\pi au}}^{\odot}
angle$



Symmetry of the oracle state: $U_{\pi\tau}\rho^t U_{\pi\tau}^{\dagger} = \rho^t$

 Γ can be chosen with the same symmetries: $U_{\pi \tau} \Gamma U_{\pi \tau}^{\dagger} = \Gamma$

 π permutation on the inputs

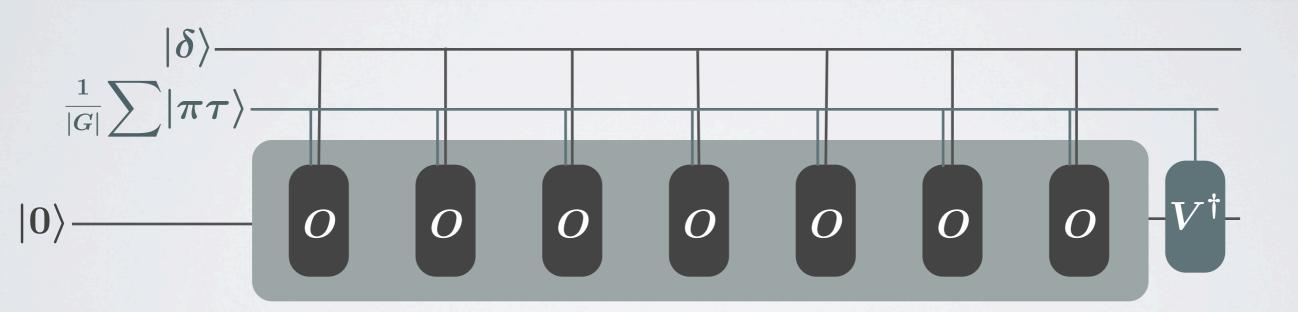
 $f_{\pi, au}= au\circ f\circ\pi$ $U_{\pi au}|f
angle=|f_{\pi au}
angle$

τ permutation on the outputs

- <u>AUTOMORPHISM GROUP G [HLŠ'07]</u>

$$orall (\pi, au) \in G, \; orall f \in F, f_{\pi au} \in F$$

 $orall (\pi, au) \in G$ there exists a unitary $V_{\pi au} |\psi_f^{\odot}
angle = |\psi_{f_{\pi au}}^{\odot}
angle$



Symmetry of the oracle state: $U_{\pi\tau} \rho^t U_{\pi\tau}^{\dagger} = \rho^t$

 Γ can be chosen with the same symmetries: $U_{\pi \tau} \Gamma U_{\pi \tau}^{\dagger} = \Gamma$

 $\mathcal{U}:(\pi,\tau)\mapsto U_{\pi\tau}$ is a representation of G

USING SYMMETRIES WHEN U IS MULTIPLICITY-FREE

USING SYMMETRIES WHEN U IS MULTIPLICITY-FREE

$$\Gamma = \sum_k \gamma_k \Pi_k$$
 where Π_k is the k -th irrep of G

USING SYMMETRIES WHEN u is multiplicity-free

$$\Gamma = \sum_k \gamma_k \Pi_k$$
 where Π_k is the k -th irrep of G

$$G_x = \{(\pi, \tau) \in G : \pi(x) = x\}$$
 $G_{xy} = \{(\pi, \tau) \in G : \pi(x) = x, \tau(y) = y\}$

l is an irrep of G_x with multiplicity m_l

$$\|\Gamma_x - \Gamma\| = \max_l \|\Delta_x^l\|$$

USING SYMMETRIES WHEN U IS MULTIPLICITY-FREE

 $\Gamma = \sum_k \gamma_k \Pi_k$ where Π_k is the k-th irrep of G

$$G_x = \{(\pi,\tau) \in G : \pi(x) = x\}$$

$$G_{xy} = \{(\pi, \tau) \in G : \pi(x) = x, \tau(y) = y\}$$

l is an irrep of G_x with multiplicity m_l

$$\|\Gamma_x - \Gamma\| = \max_l \|\Delta_x^l\|$$

large size: $|F| \times |F|$ index erasure $N! \binom{M}{N}$.

depends on the overlap of irreps of G, G_x and G_{xy}

small size: $m_l \times m_l$ index erasure 3×3

USING SYMMETRIES WHEN u is multiplicity-free

 $\Gamma = \sum_k \gamma_k \Pi_k$ where Π_k is the k-th irrep of G

depends on the overlap of irreps of G, G_x and G_{xy}

$$G_x=\{(\pi, au)\in G\ :\ \pi(x)=x\}$$

$$G_{xy} = \{(\pi, \tau) \in G : \pi(x) = x, \tau(y) = y\}$$

l is an irrep of G_x with multiplicity m_l

$$\|\Gamma_{oldsymbol{x}}-\Gamma\|=\max_{l}\left\|oldsymbol{\Delta}_{oldsymbol{x}}^{l}
ight\|$$

Example: Index-erasure $G = S_N \times S_M$ 3 $\textcircled{3$

STRONG DIRECT PRODUCT THEOREM

Assume: multiplicative lower bound complexity for QSG is T. Complexity of solving QSG on k independent instances?

- Upper bound O(kT)
- Lower bound?

STRONG DIRECT PRODUCT THEOREM

Assume: multiplicative lower bound complexity for QSG is T. Complexity of solving QSG on k independent instances?

- Upper bound O(kT)
- Lower bound?

STRONG DIRECT PRODUCT THEOREM

The success probability of an algorithm solving QSG on k independent instances with less than kT/10 queries is exponentially small in k.

$$\mathrm{MADV}_{\epsilon'}^{(k)} \leq rac{k}{10} \mathrm{MADV}_{\epsilon}$$

OPEN QUESTIONS

QUERY COMPLEXITY

- Optimality for quantum state generation?
- Strong direct product theorem holds for all functions?
 - quantum state generation problems?

PROVING LOWER BOUNDS

- New lower bounds? (Set equality)
- Shorter/Simpler proofs?
- What about Graph Isomorphism?

Acknowledgments of support:

Thank you for your attention!

Methods + Application to Index erasure: arXiv:1012.2112 [quant-ph]

A SHORT BIBLIOGRAPHY

```
[Amb'00] STOC'00
[Amb'03] FOCS'03
[Amb'05] arxiv:quant-ph/0508200
[BBBV'97] SIAM J. Comput, 1997
 [HLŠ'07] STOC'07
  [LM'04] CCC'04
[LMRŠ'10] arxiv:1011.3020 [quant-ph]
  [Rei'09] FOCS'09
  [Špa'08] CCC'08
  [Shi'02] FOCS'02
  [SŠ'06] Th. Comput. 2006
```