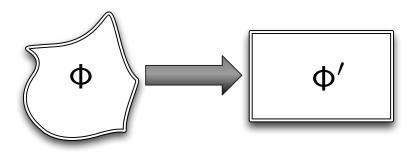
Distinguishability of Random Unitary Channels arXiv:0804.1936

Bill Rosgen

Institute for Quantum Computing University of Waterloo

January 16, 2009

What is this talk about?



- **ightharpoonup** Given a channel Φ, construct random unitary simulation Φ'
- ▶ Simulation is not perfect, but works for several applications

Quantum channels

A channel is a completely positive trace preserving linear map.

- $tr \Phi(X) = tr X$
- ▶ If $X \ge 0$ then $(\Phi \otimes I_{\mathcal{F}})(X) \ge 0$

▶ For a channel on states on \mathcal{A} , there exists a unitary U on $\mathcal{A} \otimes \mathcal{B}$ with

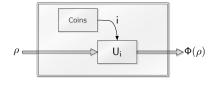
$$\Phi(X)=\operatorname{tr}_{\mathcal{B}}U(X\otimes|0\rangle\langle 0|)U^*.$$

Random Mixed-unitary channels

Definition

A channel Φ is *mixed-unitary* if there exists a probability distribution p_i and unitaries U_i such that

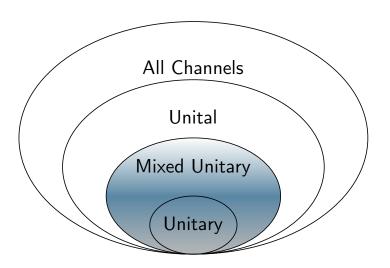
$$\Phi(X) = \sum_{i} p_{i} U_{i} X U_{i}^{*}.$$



Examples:

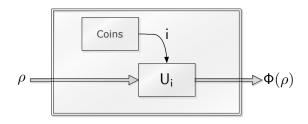
- ▶ Depolarizing channel: $N(\rho) = 1/d$
- ▶ Dephasing channel: $D(|i\rangle\langle j|) = \delta_{ii}|i\rangle\langle j|$

Classes of channels



- ▶ A channel Φ is *unital* if $\Phi(1) = 1$
- ► All these containments are strict

Why you should care about mixed-unitary channels



- ► Exactly reversible using information measured from the environment¹
- Non-contractive with respect to entropy
- ► Classical capacity is additive for qubit mixed unitary channels²

¹Gregoratti and Werner 2003

²Tregub 1986, King 2002

Measures

For a channel Φ, how pure can the output be?

$$S_{\min}(\Phi) = \min_{\rho} S(\Phi(\rho))$$
$$\|\Phi\|_{p} = \max_{\rho} \|\Phi(\rho)\|_{p}$$
$$= \max_{\rho} (\operatorname{tr} |\Phi(\rho)|^{p})^{1/p}$$

Given a black box implementing one of two known channels, what is the probability of identifying the black box with one use?

$$\|\Phi - \Psi\|_{\diamond} = \max_{\rho} \|(\Phi \otimes I)(\rho) - (\Psi \otimes I)(\rho)\|_{\mathrm{tr}}$$

Main Result

Theorem

Let $\epsilon > 0$ and Φ, Ψ be channels. Then, for $p < \infty$, there exist mixed-unitary Φ', Ψ' such that

1.
$$S_{\min}(\Phi) \ge S_{\min}(\Phi') - \log d_{\epsilon} \ge S_{\min}(\Phi) - \epsilon$$

2.
$$\|\Phi\|_p \le \frac{\|\Phi'\|_p}{\|\mathbf{1}_{d_\epsilon}/d_\epsilon\|_p} \le \|\Phi\|_p + \epsilon$$

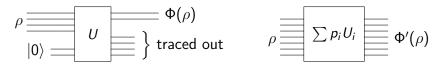
3.
$$\|\Phi - \Psi\|_{\diamond} \le \|\Phi' - \Psi'\|_{\diamond} \le \|\Phi - \Psi\|_{\diamond} + \epsilon$$

► This generalizes a result of Fukuda on unital channels

Overview

Proof strategy:

 Given a channel Φ, find an approximation Φ' that is mixed-unitary

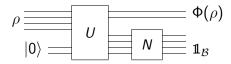


Only two operations that are not mixed-unitary:

- 1. Partial trace
- 2. Ancillary qubits in $|0\rangle$ state

Approximating the partial trace

ightharpoonup Replace $\operatorname{tr}_{\mathcal{B}}$ with the completely noisy channel on \mathcal{B}



- ▶ The resulting output is $\Phi(\rho) \otimes \mathbb{1}_{\mathcal{B}}$
- ▶ The depolarizing channel can be written as

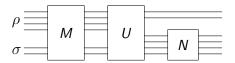
$$N(\rho) = \int U \rho U^* dU = \frac{1}{d^2} \sum_{i=1}^{d^2} W_i \rho W_i^* = 1/d$$

for a suitable choice of operators W_i .

Simulating ancillary qubits

To simulate ancillary space:

- Add extra 'input' qubits
- ▶ Test that these qubits are in the $|0\rangle$ state
 - ▶ If they are, do nothing
 - If not, send all input qubits to highly mixed state

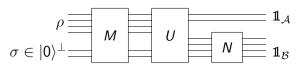


If σ is far from $|0\rangle\langle 0|$, the output has (almost) maximum entropy

▶ any input maximizing the output norm or minimizing the output entropy will have $\sigma \approx |0\rangle\langle 0|$

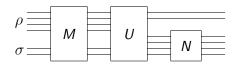
Implementation

The ideal operation M is not unital, and so it is not mixed unitary.



- ▶ Mixing operation only needs to increase the entropy, not completely mix the states not of the form $\rho \otimes |0\rangle\langle 0|$
- ▶ Solution: completely mix the subspace of states $\mathcal{H} \otimes \{|0\rangle\}^{\perp}$
- ▶ This is the approximation: mixing only this subspace produces a state with trace norm distance O(1/d) to the completely mixed state

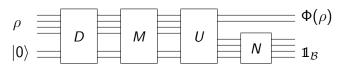
One final piece . . .



- ▶ Potential problem: entanglement between the subspaces $\mathcal{H} \otimes \{|0\rangle\}$ and $\mathcal{H} \otimes \{|0\rangle\}^{\perp}$ complicates the argument
- Solution: apply dephasing between these subspaces
- ▶ Implementation: apply phase flip to $\mathcal{H} \otimes \{|0\rangle\}^{\perp}$ with probability 1/2

The final construction

- ▶ Given input $\rho \otimes |0\rangle\langle 0|$ the output is $\Phi(\rho) \otimes \mathbb{1}_{\mathcal{B}}$
- ▶ If the input is not in $\mathcal{H} \otimes \{|0\rangle\}$, the output is highly mixed



▶ The result is random unitary, since all of the components are.

Main Result

Theorem

Let Φ, Ψ be channels with input plus ancillary dimension d, and let Φ', Ψ' be mixed unitary approximations. Then

1.
$$S_{\min}(\Phi) \ge S_{\min}(\Phi') - \log d \ge S_{\min}(\Phi) - O(\log d/d)$$

2.
$$\|\Phi\|_{p} \le \frac{\|\Phi'\|_{p}}{\|\mathbb{1}_{d}/d\|_{p}} \le \|\Phi\|_{p} + O(d^{-1/p})$$

3.
$$\|\Phi - \Psi\|_{\diamond} \leq \|\Phi' - \Psi'\|_{\diamond} \leq \|\Phi - \Psi\|_{\diamond} + O(1/d)$$

▶ Adding (unused) ancillary dimension improves the simulation

Applications

▶ The **QIP**-hard computational problem of distinguishing two circuits Q_1 , Q_2 is to decide between

1.
$$\|Q_1 - Q_2\|_{\diamond} \ge 2 - \epsilon$$
,

$$2. \|Q_1 - Q_2\|_{\diamond} \leq \epsilon.$$

▶ This construction immediately implies the hardness of this problem for circuits *Q*₁, *Q*₂ implementing mixed unitary channels.

- This also reduces the additivity of the classical capacity for a channel to the additivity of a set of mixed unitary approximations.
- Further applications?