Exact entanglement renormalization for string-net models

Robert König, Ben Reichardt and Guifre Vidal

QIP 2009 Santa Fe

Long-distance structure and scale-invariance

Eliminate shortdistance scaling scaling details. Distill long-distance structures. scale-invariant state (fixed-point) States differing scaling scaling only in short-distance scaling scaling ...flow to the properties same fixed-point under repeated

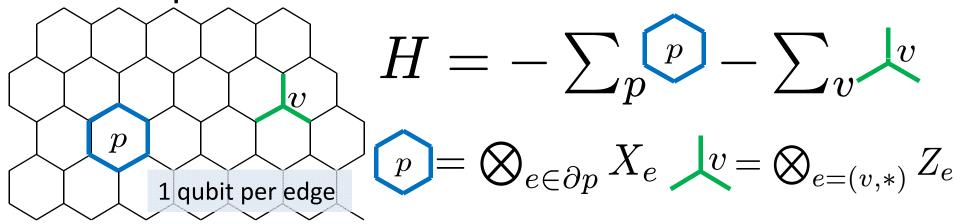
This talk:

- precise definition of
- scaling
- scale-invariance of ground states

for Levin and Wen's string-net models (2004)

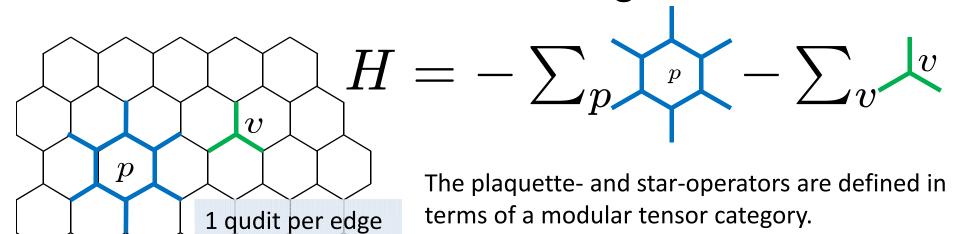
coarse-graining

Example: Kitaev's toric code

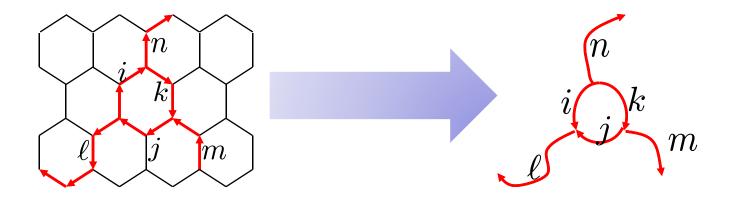


only has abelian anyons, not universal

Generalization: Levin-Wen string-net model

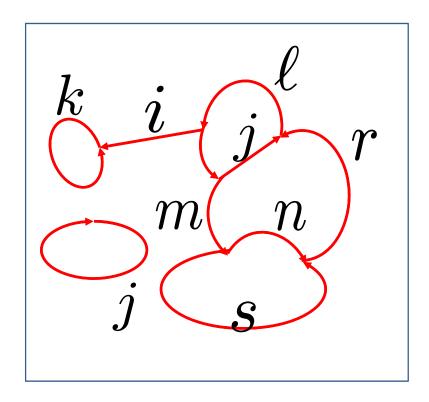


has anyonic excitations described by the doubled theory



Smooth string-nets (we'll discretize later)

Example:



Features: directed trivalent "graph" with allowed triples at each vertex

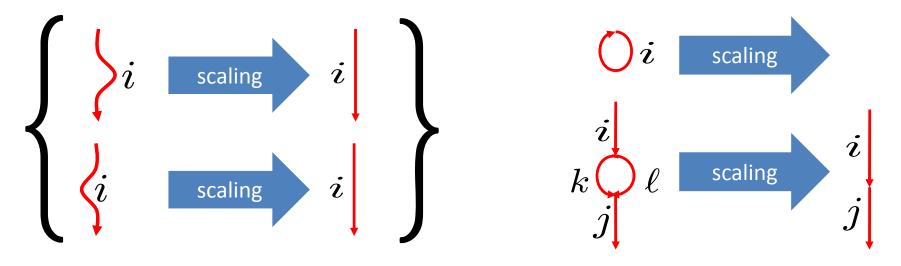
label set:
$$\{0,i,i^*,j,j^*,k,k^*,\dots,\}$$
 . dual labels: ...

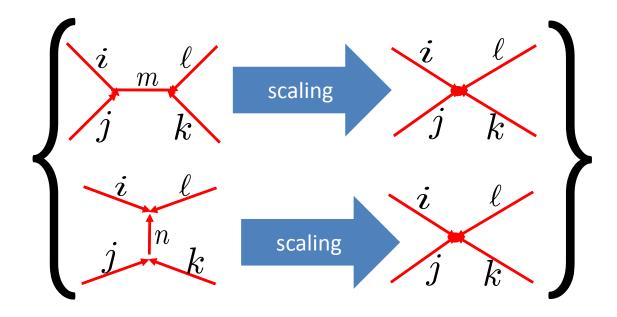
0-label (absence of string):
$$\begin{array}{ccc}
0 & = & 0 \\
\end{array}$$

branching rules (set of allowed triples):

State: superposition of string-net configurations

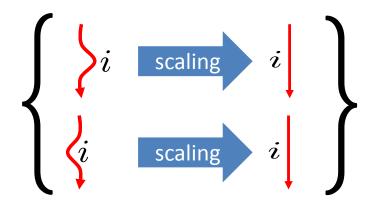
String-net scaling behavior





Consider a scale-invariant state

$$|\Phi\rangle = \sum_{C} \Phi(C)|C\rangle$$



$$\Phi((i) = \Phi(i))$$

$$k\bigcap_{j}\ell$$
 scaling j

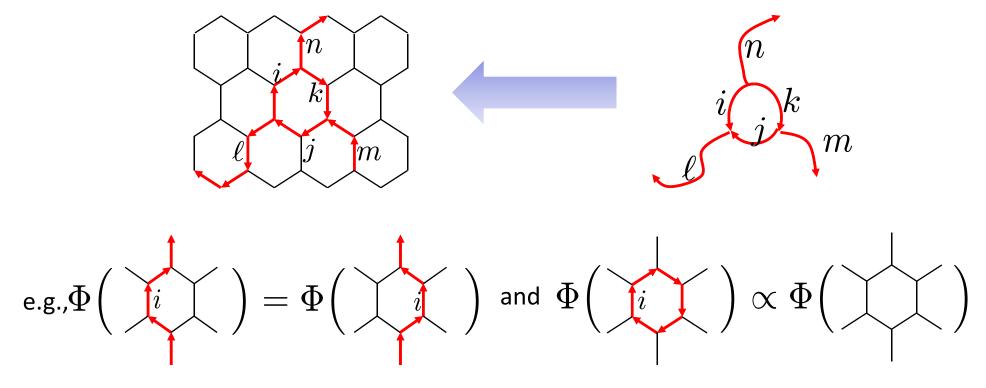
$$\Phi(_{k} \stackrel{i}{\stackrel{}{
ho}}_{\ell}) \propto \delta_{ij} \Phi(_{i})$$

$$\begin{array}{c|c} i & \ell & \\ j & k & \\ \hline \end{array}$$

$$\Phi\left(\sum_{j=k}^{i=m}\ell\right) = \sum_{n} F_{k\ell n}^{ijm} \Phi\left(\sum_{j=k}^{i=l}\ell\right)$$

Note: $F_{k\ell}^{ij\cdot}$ is unitary for all i,j,k,ℓ

Fact: Levin-Wen Hamiltonian terms enforce (lattice version) of local rules



The model is "derived" from the assumption of scale-invariance.

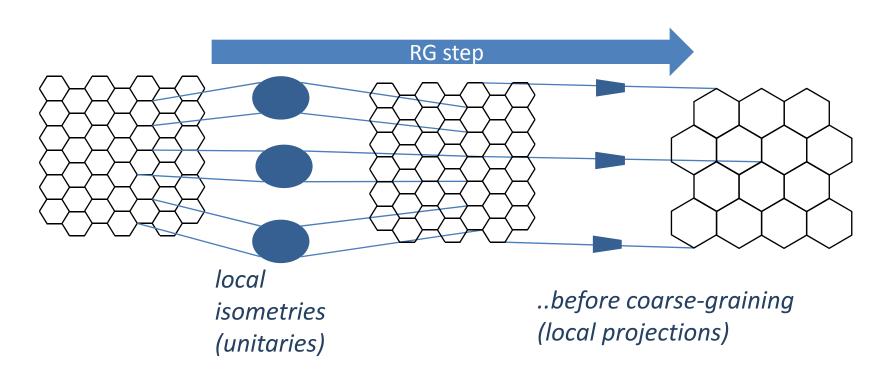
$$H = -\sum_{p} \int_{p}^{p} -\sum_{v} v$$

Levin-Wen models and RG flow

This talk: Can scale-invariance been shown formally?

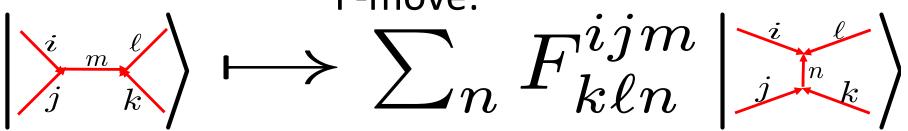
i.e.,

What **renormalization group (RG) transformation fixes ground states** of the Levin-Wen model?

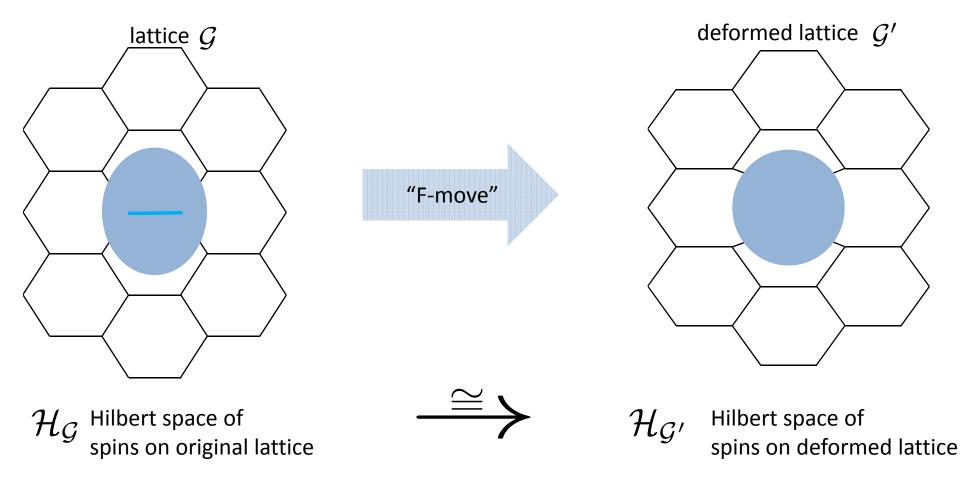


intuition: remove entanglement between neighboring regions before coarse-graining (Vidal'05)

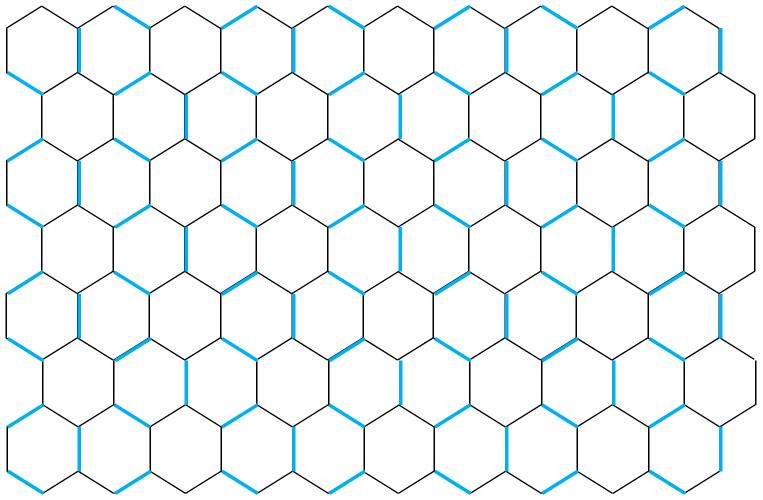
F-move:



For unitary tensor categories, this is a **unitary**. The F-move provides a natural isomorphisms between the Hilbert spaces of the two lattices.



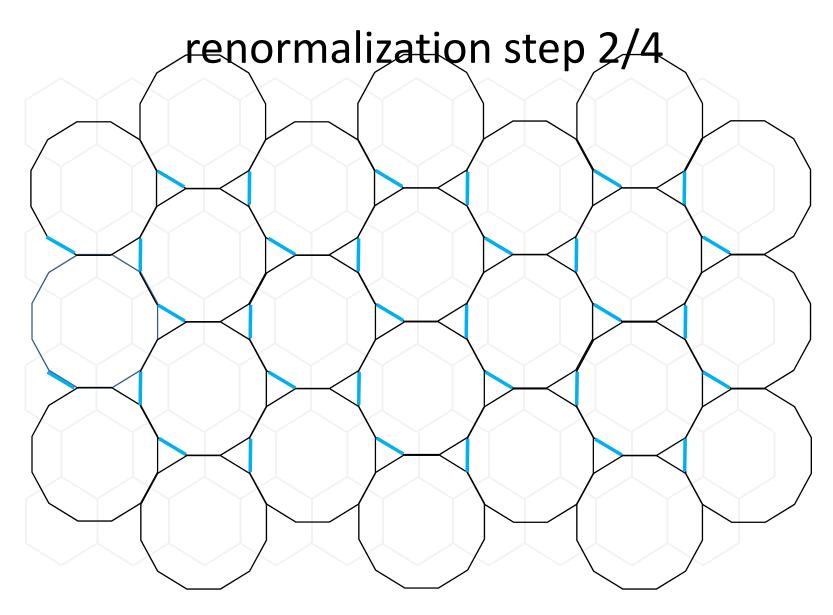
renormalization step 1/4



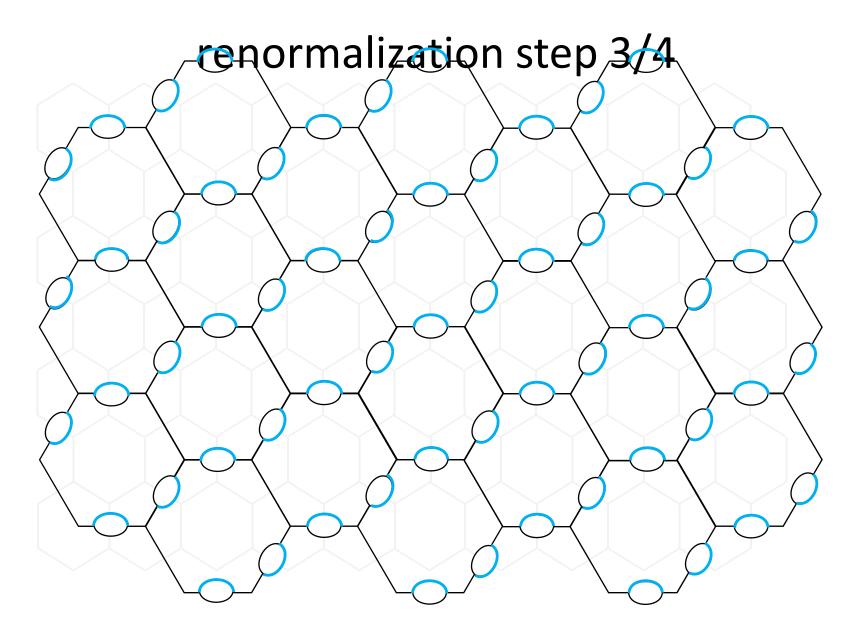
Basic idea: Simplify lattice using F-moves

First apply F-moves to blue edges

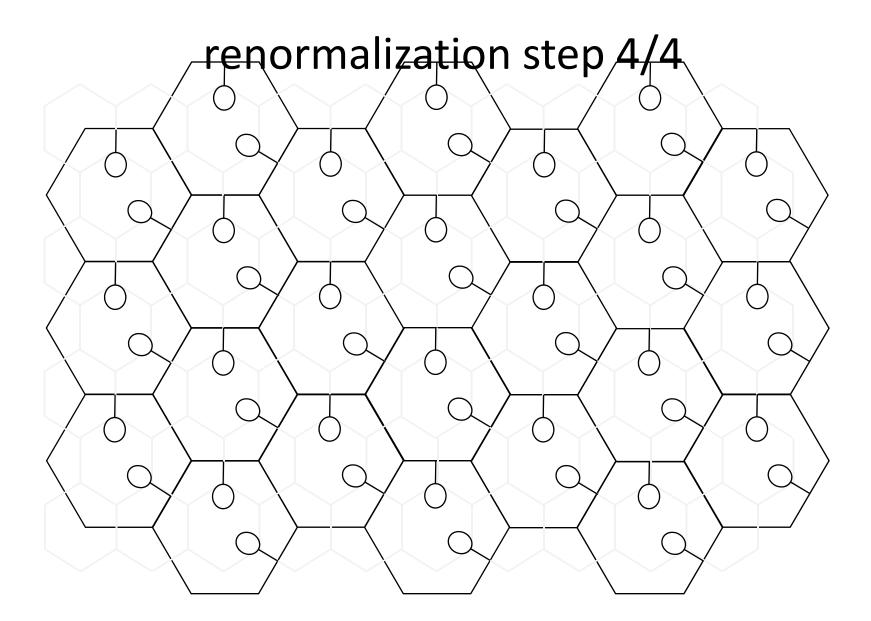
These moves commute.

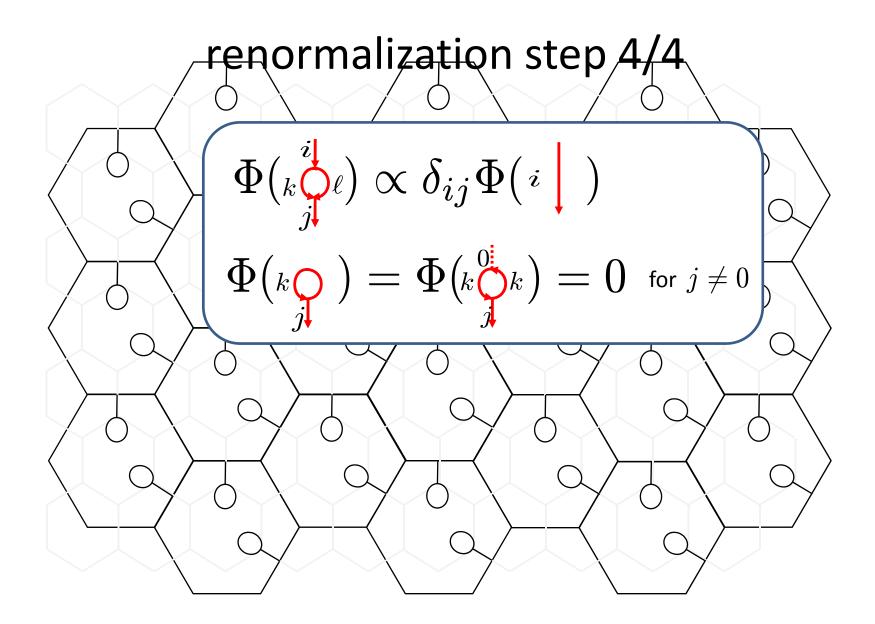


apply F-moves to blue edges \

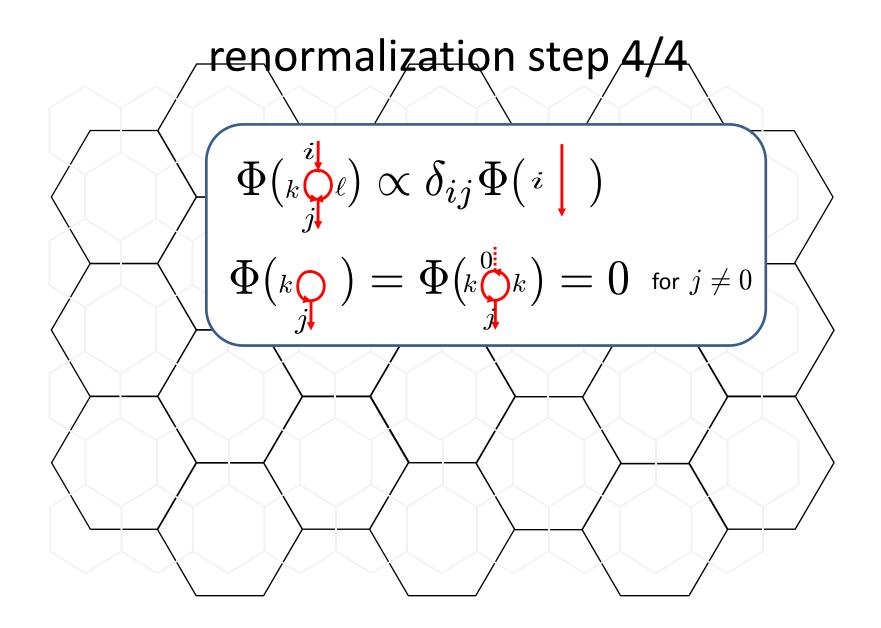


apply F-moves to edges



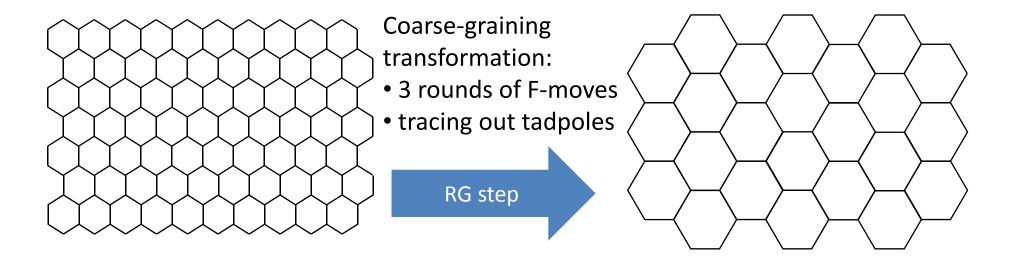


Project qudits on tadpoles onto a fixed state to eliminate degrees of freedom (2 edges=2 qudits per tadpole)



Project qudits on tadpoles onto a fixed state to eliminate degrees of freedom (2 edges=2 qudits per tadpole)

Summary of RG procedure



This RG procedure has the ground state of the Levin-Wen model as fixed point!

Proof: see arXiv: 0806.4583

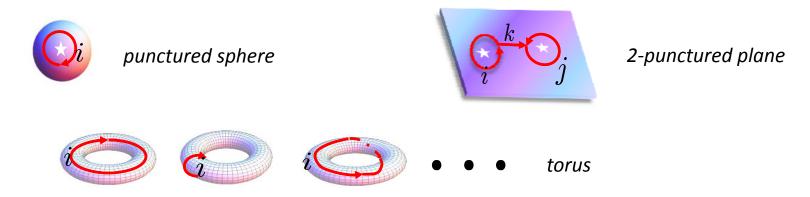
Remark: RG procedure independent of topology

Fact: In the **plane**, there is a **unique** state satisfying the local rules (i.e., Levin-Wen ground state is unique)

Proof: The coefficient of a string-net in the ground state is **proportional** to that of the empty configuration as **determined by the local rules**.

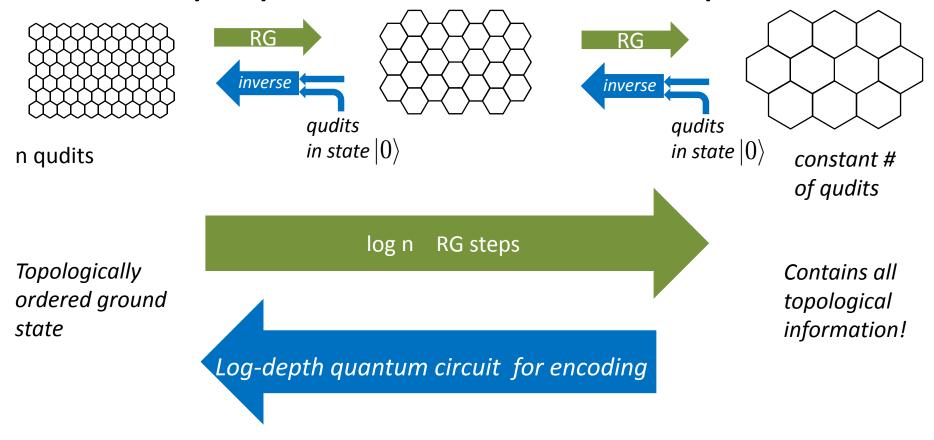
$$\Phi\Big(\bigvee_{i}^{\ell} \Big) = \sum_{n} F_{i^*\ell^*n}^{\ell ik^*} \Phi\Big(\bigvee_{i}^{\ell} \Big) = F_{i^*\ell^*0}^{\ell ik^*} \Phi\Big(\bigvee_{i}^{\ell} \Big) = d_{\ell} d_{k} F_{i^*\ell^*0}^{\ell ik^*} \Phi\Big(\bigvee_{i}^{\ell} \Big)$$

Topological ground space degeneracy: local rules define higher dimensional subspace for nontrivial surfaces.



Ground space defines a code, for example the toric code from the toric model. Universal anyonic computation is possible inside the code space.

Further properties/uses of the RG procedure



- RG procedure "distills" topological information into a small system
- provides efficient MERA-description of ground states (for, e.g., computation of expectation values)
- may be used to initialize numerical variational methods when studying perturbations (stability of topological order?)