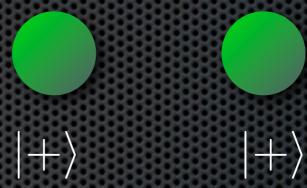
Most quantum states are useless for measurement-based quantum computation

Steve Flammia Perimeter Institute QIP 2009, Santa Fe

D. Gross, SF, J. Eisert 0810.4331

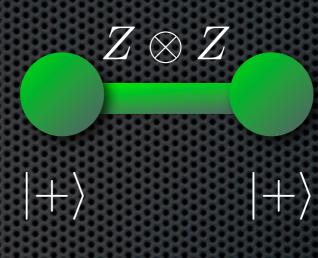
M. Bremner, C. Mora, A. Winter 0812.3001

prepare X eigenstates



prepare X eigenstates

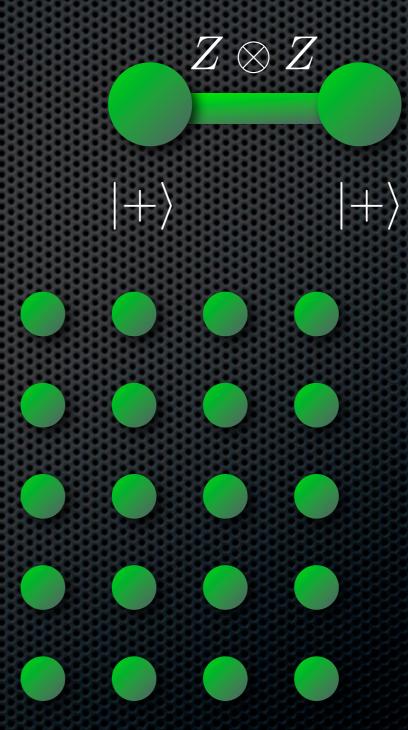
entangle neighbors with a Z-Z coupling



prepare X eigenstates

entangle neighbors with a Z-Z coupling

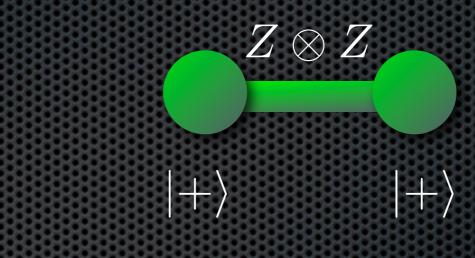
 Build a large lattice for universality: the CLUSTER STATE

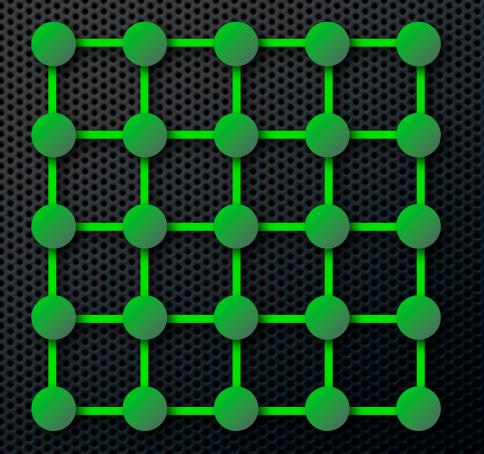


prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE





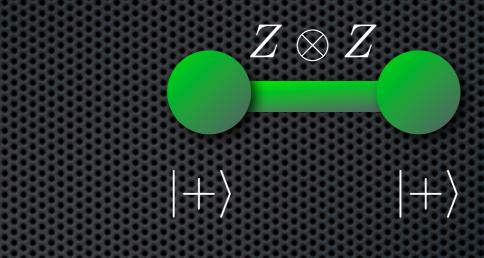
 $|\psi_0\rangle$ 

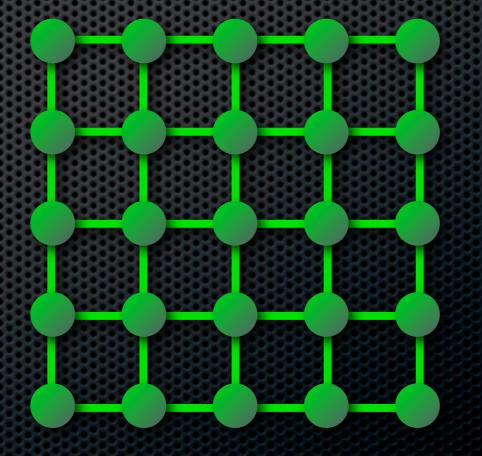
prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute





 $|\psi_0\rangle$ 

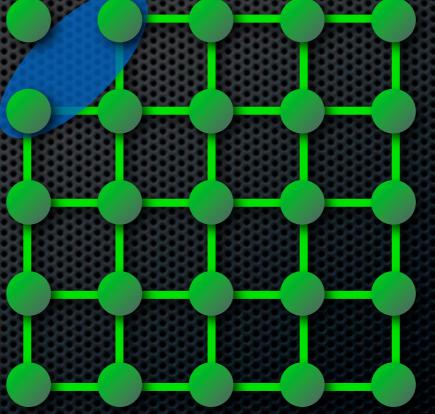
prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute





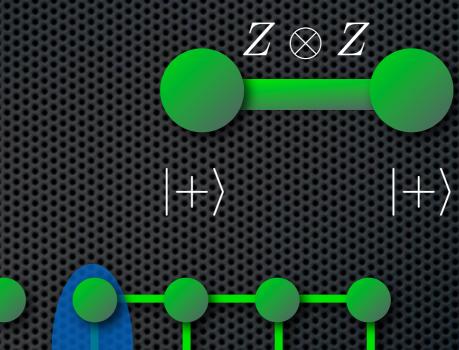
 $|\psi_1
angle$ 

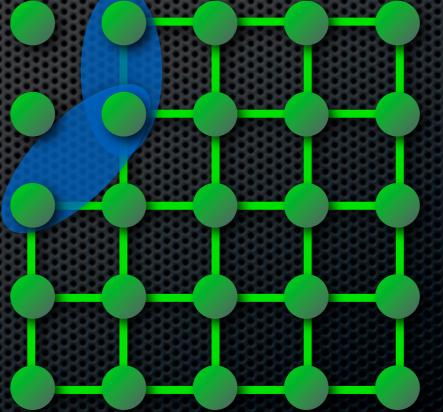
prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute





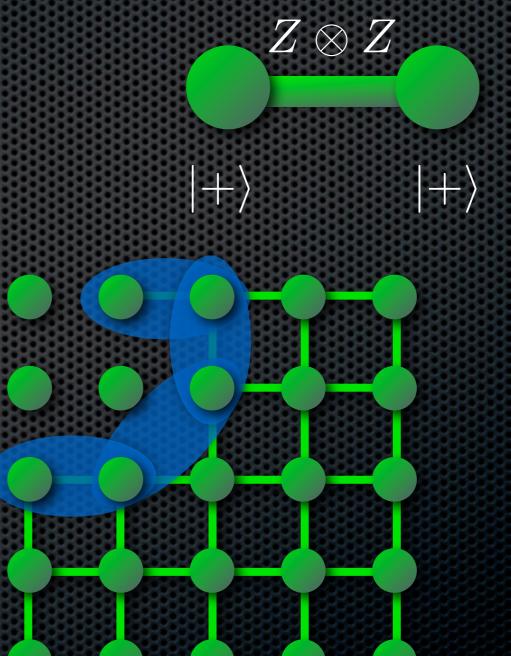
 $|\psi_2
angle$ 

prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute



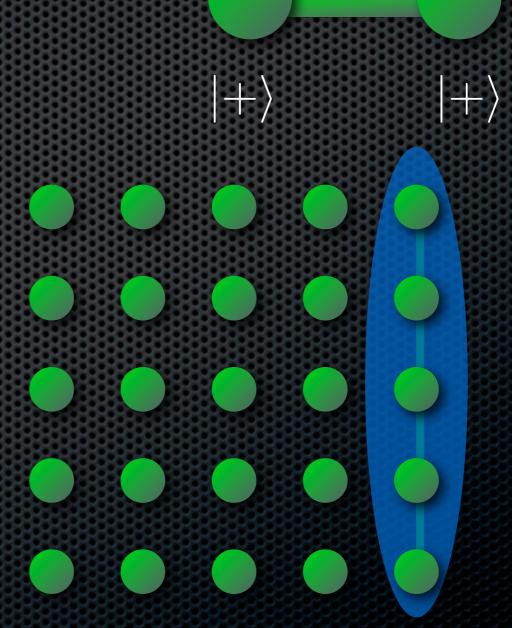
 $|\psi_3\rangle$ 

prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute



 $|\psi_n\rangle$ 

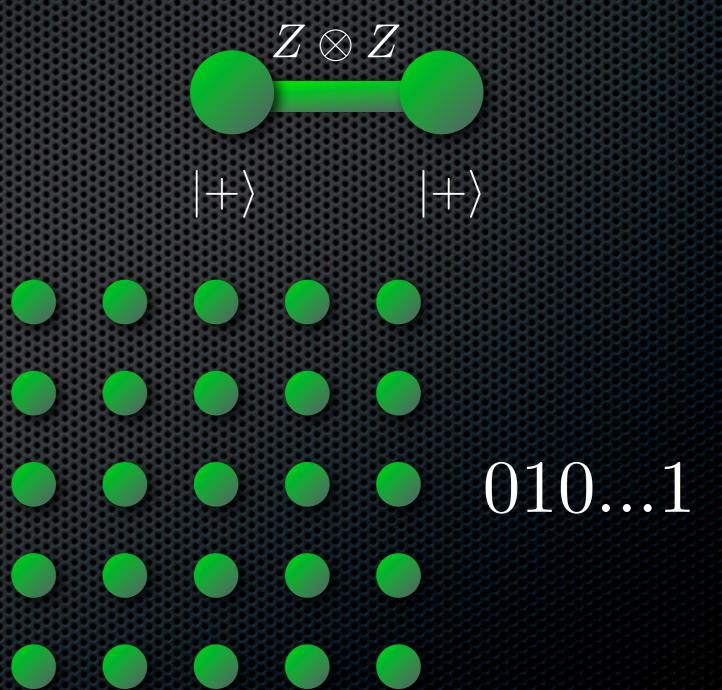
Raussendorf & Briegel PRL 2001

prepare X eigenstates

entangle neighbors with a Z-Z coupling

 Build a large lattice for universality: the CLUSTER STATE

 arbitrary single-qubit measurements with feedforward to compute



In general, MBQC requires:

- In general, MBQC requires:
  - A family of n qubit quantum states

- In general, MBQC requires:
  - A family of n qubit quantum states



- In general, MBQC requires:
  - A family of n qubit quantum states



- In general, MBQC requires:
  - A family of n qubit quantum states
  - A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



- In general, MBQC requires:
  - A family of n qubit quantum states
  - A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



- In general, MBQC requires:
  - A family of n qubit quantum states
  - A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



- In general, MBQC requires:
  - A family of n qubit quantum states
  - A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



- In general, MBQC requires:
  - A family of n qubit quantum states
  - A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



### In general, MBQC requires:

- A family of n qubit quantum states
- A classical control computer determines where to measure, the measurement basis and how to interpret the measurement outcomes



 Without initial entanglement, it's clear you can't do better than BPP.

# Universality and entanglement Question:

What are the necessary and sufficient conditions for a family of n qubit quantum states to be universal for MBQC?



# Universality and entanglement Question:

What are the necessary and sufficient conditions for a family of n qubit quantum states to be universal for MBQC?



### Necessary conditions:

van den Nest, Miyake, Dür, Briegel 2006 find entanglement measures that must grow "quickly" with n.

# Universality and entanglement Question:

What are the necessary and sufficient conditions for a family of n qubit quantum states to be universal for MBQC?



#### Sufficient conditions:

Gross, Eisert, Schuch, Pérez-García 2007 find states with special structure in the many-body correlations.

Brennen & Miyake 2008, Doherty & Bartlett 2008 find *ground states* with special structure.

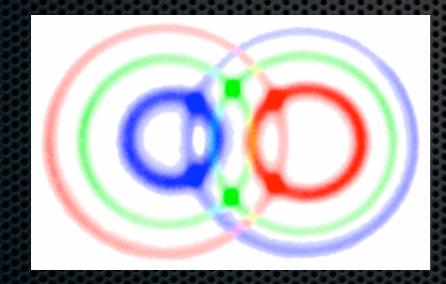
Quantum world

Classical world

Quantum world

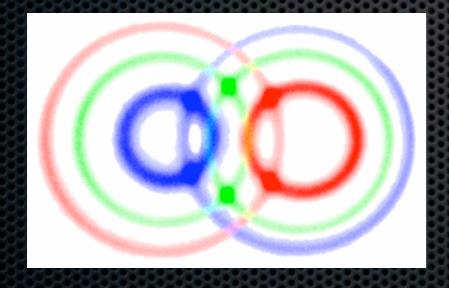
Classical world

Entanglement and correlations



#### Quantum world

Entanglement and correlations



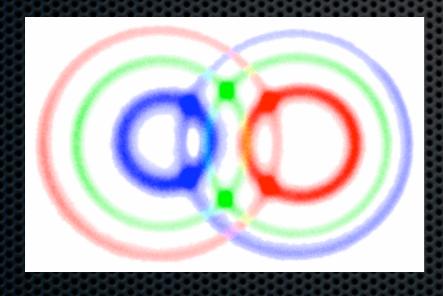
### Classical world

Local bases,
Limited processing
power.



#### Quantum world

Entanglement and correlations





MBQC

### Classical world

Local bases, Limited processing power.



$$E_g(\Psi) = -\log_2 \sup_{\alpha \in \mathcal{P}} |\langle \alpha | \Psi \rangle|^2$$

the set of product states

Answers the question:
How far is the nearest
collection of local bases

 $\alpha_1, \alpha_2, \ldots, \alpha_n$ ?

Large geometric measure



Far from all product states

$$E_g(\Psi) = -\log_2 \sup_{\alpha \in \mathcal{P}} |\langle \alpha | \Psi \rangle|^2$$

the set of product states

Answers the question:
How far is the nearest
collection of local bases

 $\alpha_1, \alpha_2, \ldots, \alpha_n$ ?

Large geometric measure



Far from all product states

Theorem 1 (GFE): n qubit states with  $E_g > n - O(log n)$  are useless for MBQC.

For concreteness, a state is useless if it fails to provide a polynomial-time MBQC algorithm for Factoring.

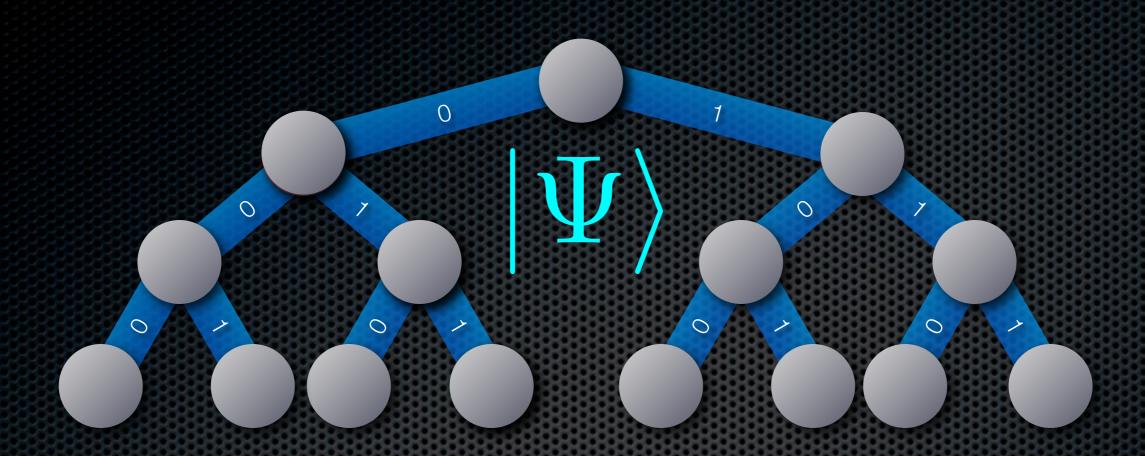
Theorem 1 (GFE): n qubit states with  $E_g > n - O(log n)$  are useless for MBQC.

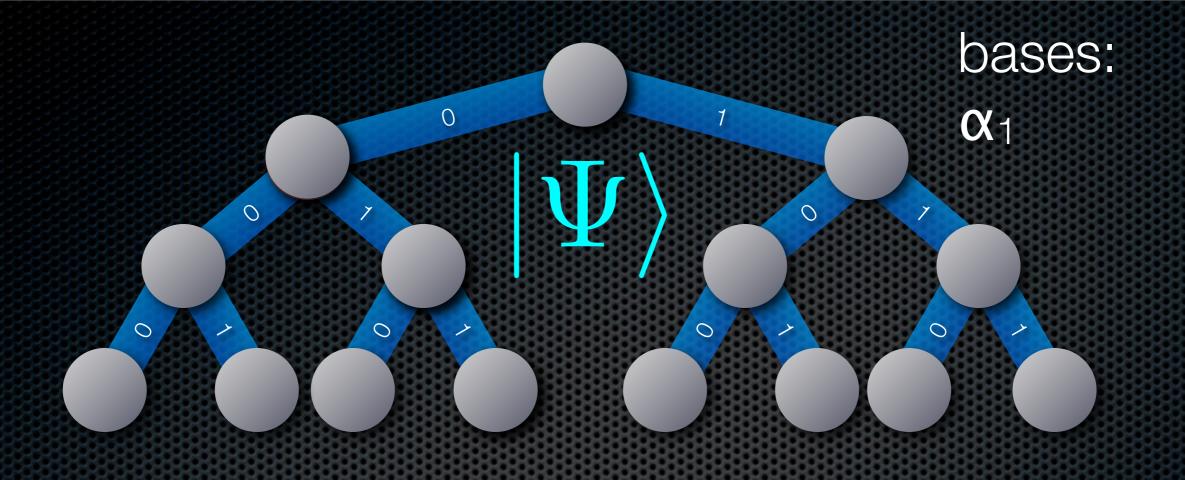
For concreteness, a state is useless if it fails to provide a polynomial-time MBQC algorithm for Factoring.

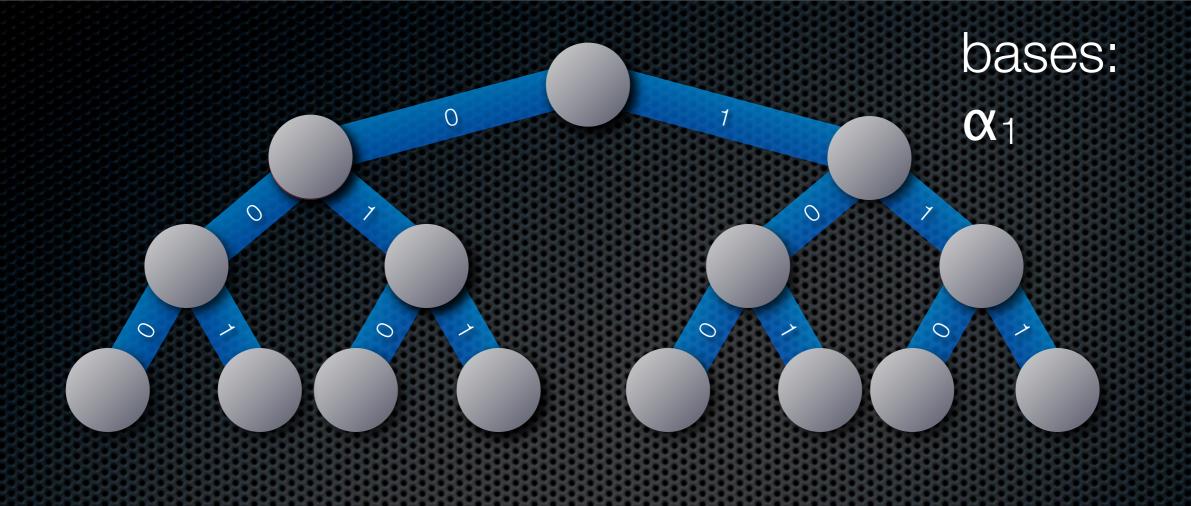
Proof strategy: replace  $\psi$  with a classical coin and show there exists a classical algorithm that factors just as well (within poly factors).

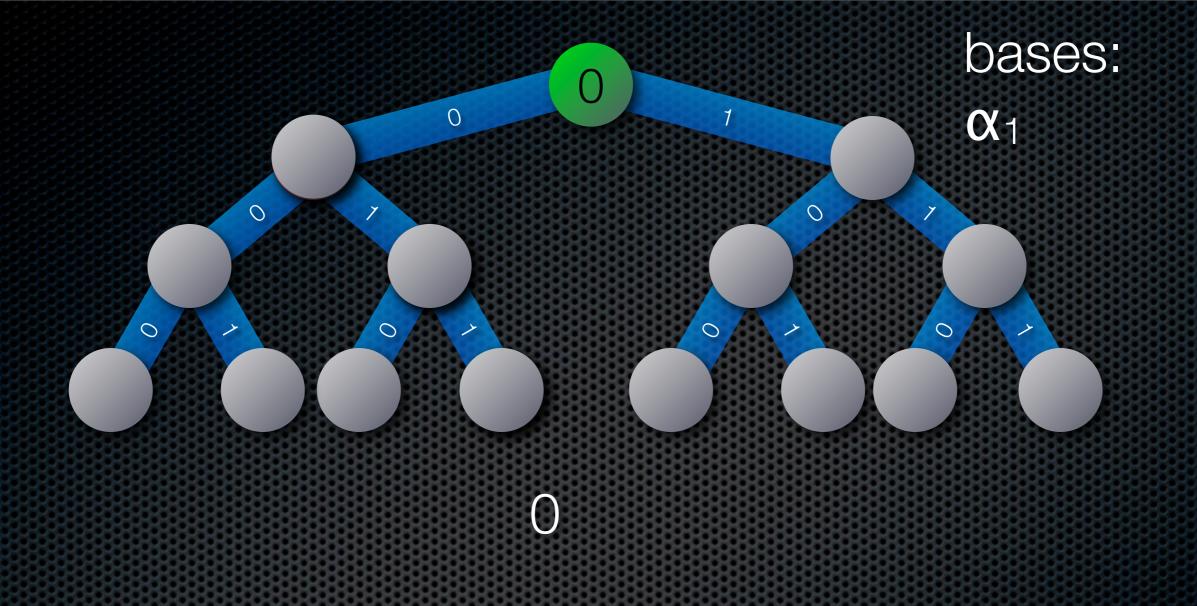


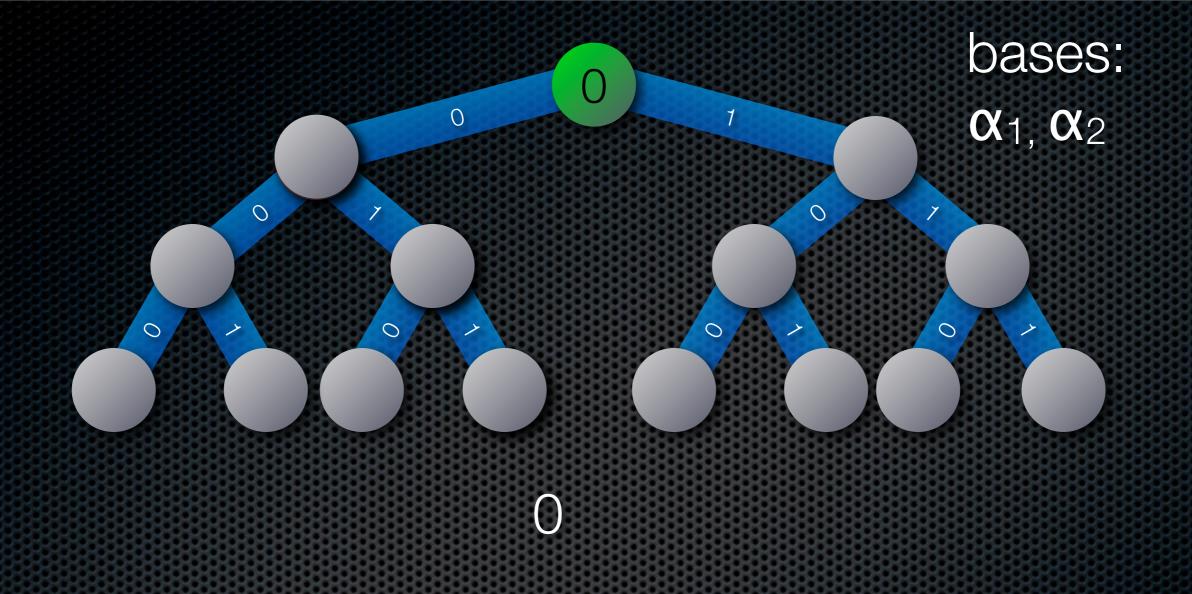
Theorem 1 (GFE): n qubit states with  $E_g > n - O(log n)$  are useless for MBQC.

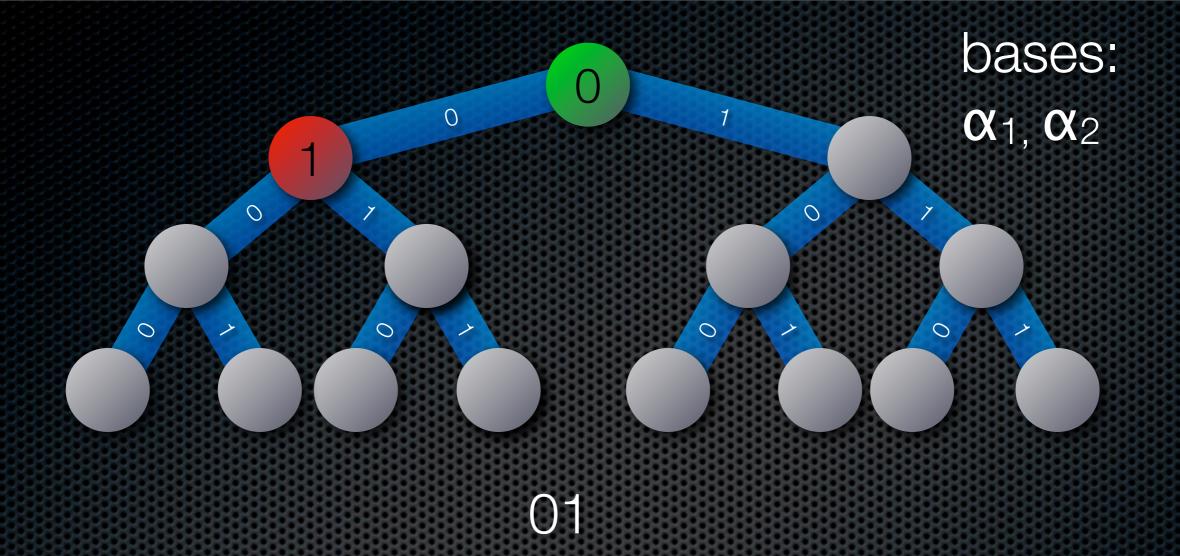


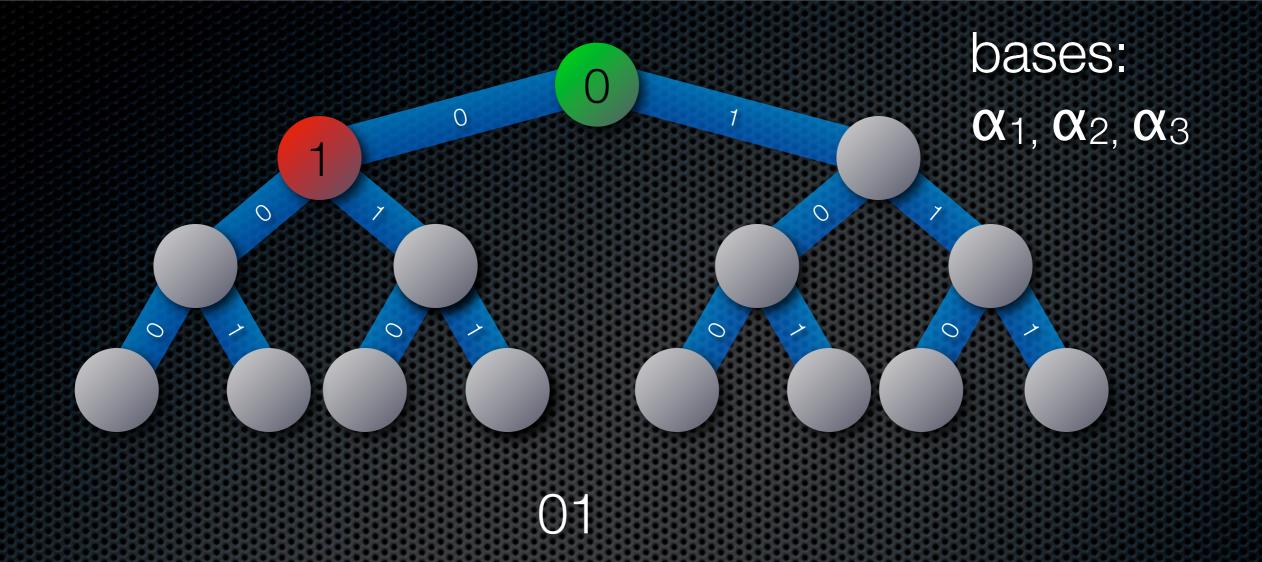


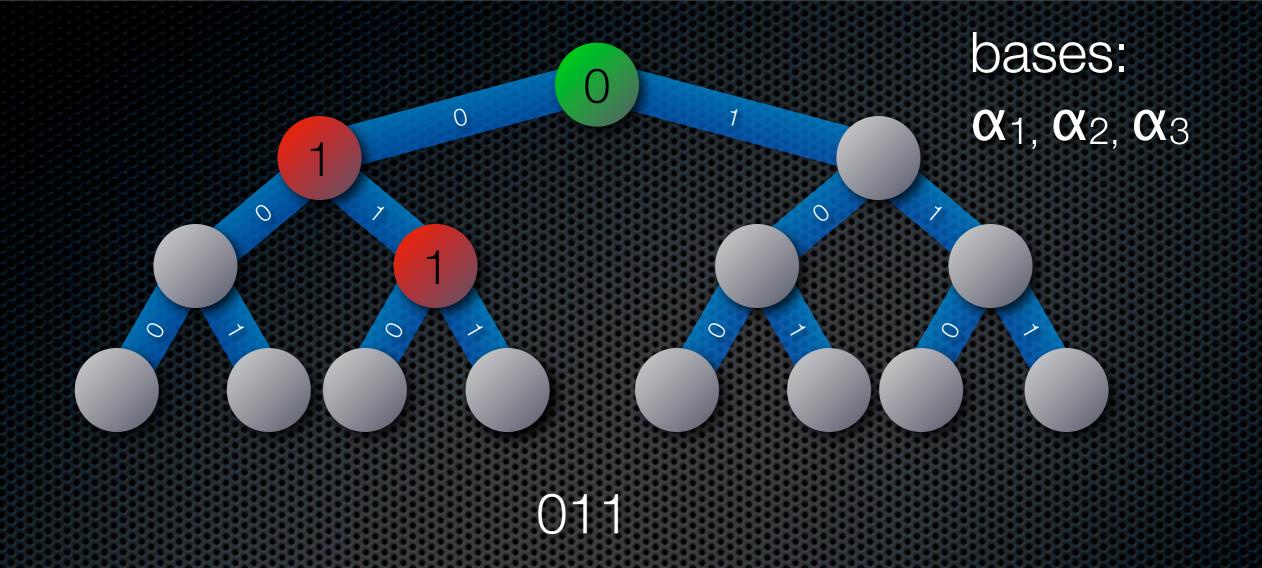


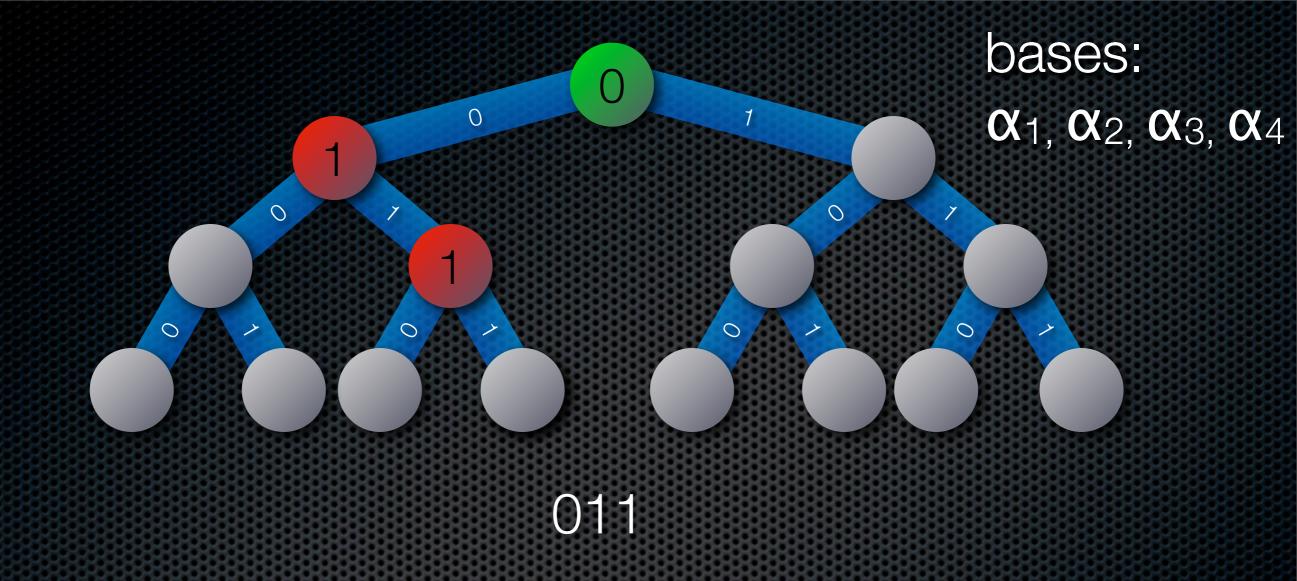


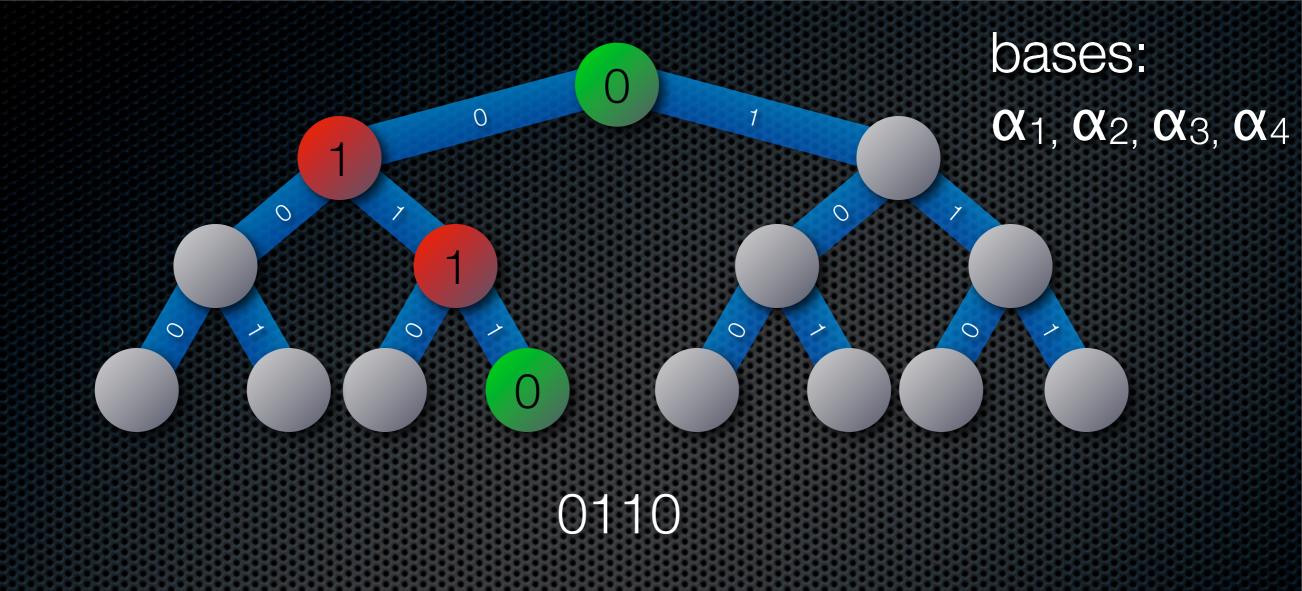


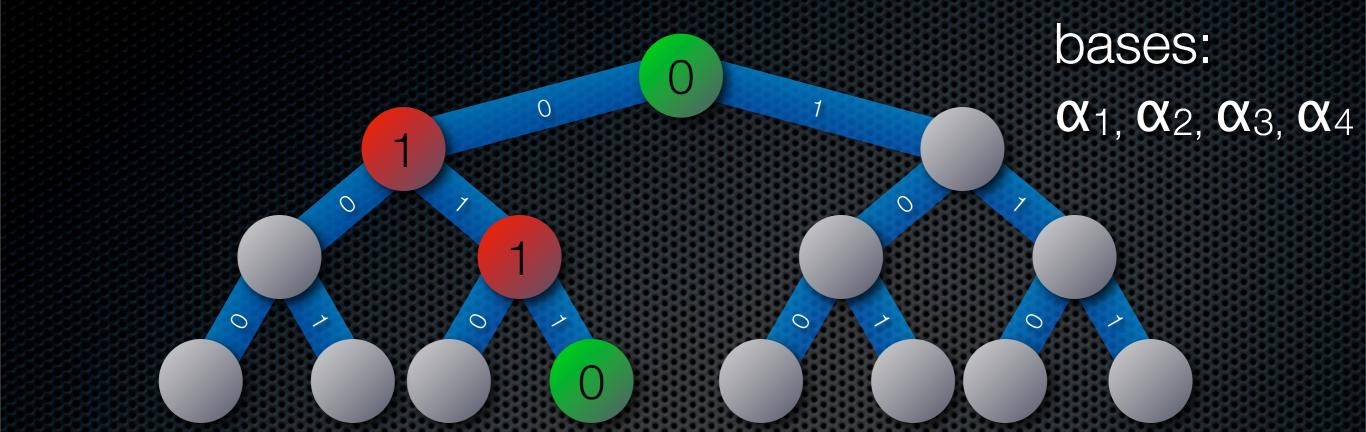


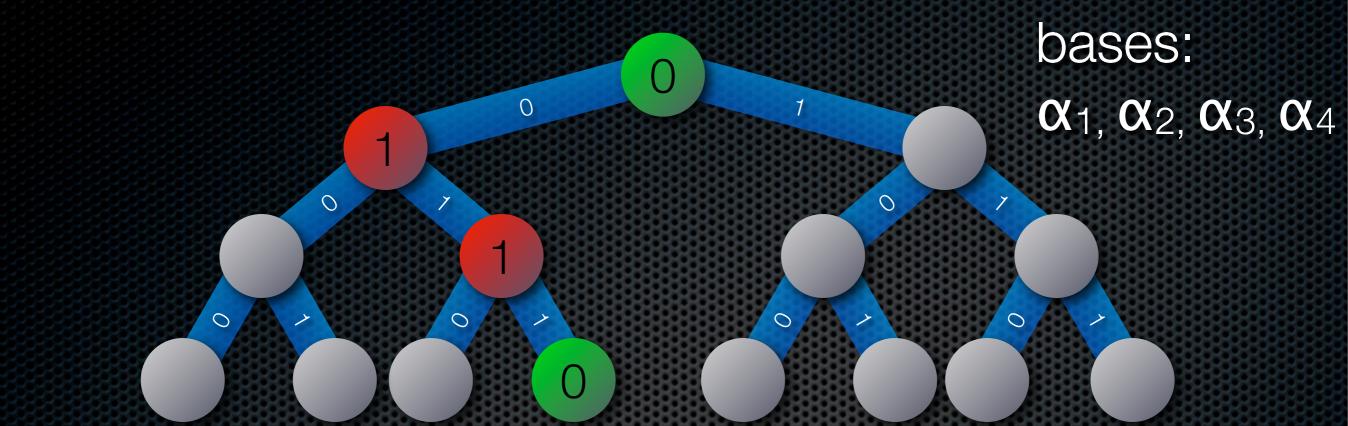








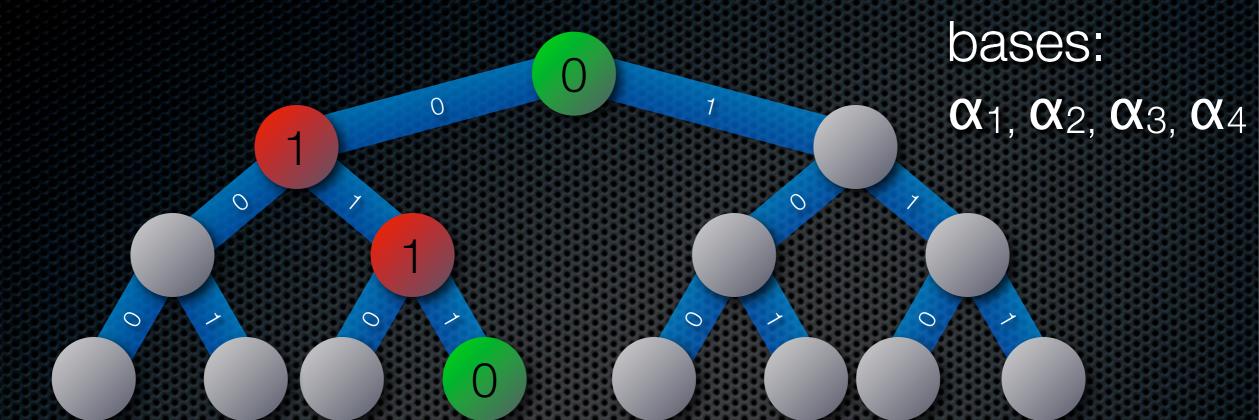




Suppose

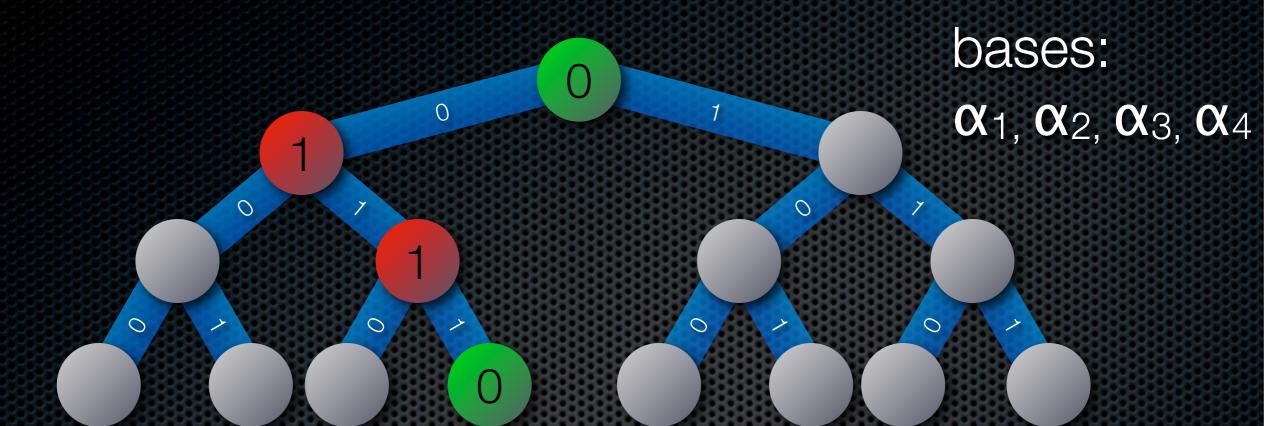
 $E_g > n-\delta$  ,

 $\delta = O(\log n)$ 



Suppose 
$$E_g > n-\delta$$
,  $\delta=O(\log n)$ 

$$\begin{aligned} |\langle \alpha | \Psi \rangle|^2 &\leq 2^{-E_g} \leq 2^{-n+\delta} \\ \Rightarrow \frac{|G|}{2^n} > 2^{-\delta-1} = \text{poly(1/n)}. \end{aligned}$$



Suppose 
$$|\langle \alpha | \Psi \rangle|^2 \leq 2^{-E_g} \leq 2^{-n+\delta}$$
 E<sub>g</sub> > n- $\delta$ ,  $\Rightarrow \frac{|G|}{2^n} > 2^{-\delta-1} = \text{poly(1/n)}.$ 

To simulate classically, just ignore the measurement results and use a classical coin!



Useless for MBQC

Useless for MBQC

This is vacuous unless such states exist.





#### Useless for MBQC

This is vacuous unless such states exist.

In fact, they are abundant.



Theorem 2 (GFE): The fraction of n qubit states with  $E_g < n - O(log n)$  is less than  $exp(-n^2)$ .



#### Useless for MBQC

This is vacuous unless such states exist.

In fact, they are abundant.



Theorem 2 (GFE): The fraction of n qubit states with  $E_g < n - O(log n)$  is less than  $exp(-n^2)$ .

The proof involves standard measure concentration arguments (via ε-nets) and known results about random states

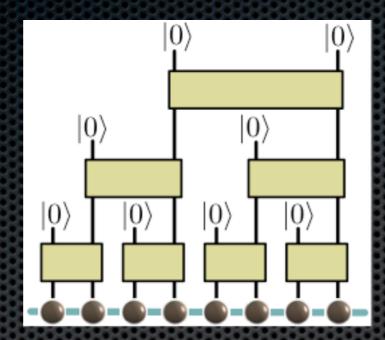




Can provably useless states be created efficiently?

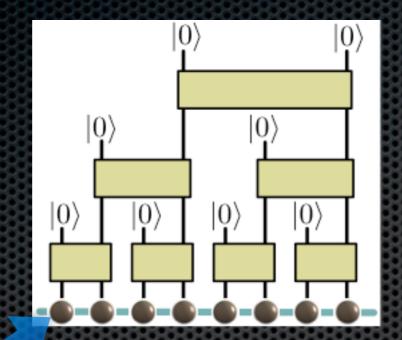


Can provably useless states be created efficiently?



We can get to  $E_g > n-o(n)$  using a TTN construction.

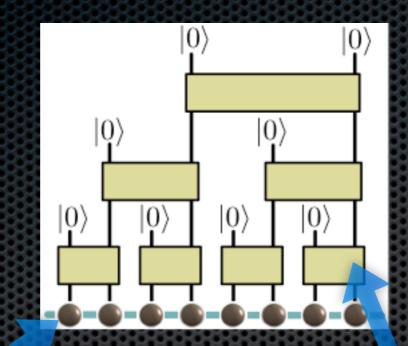
Can provably useless states be created efficiently?



We can get to E<sub>g</sub> > n-o(n) using a TTN construction.

d-level systems

Can provably useless states be created efficiently?



We can get to  $E_g > n-o(n)$  using a TTN construction.

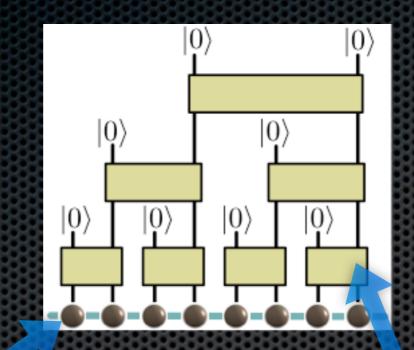
d-level systems

Isometry V = V(U)

$$V:\mathbb{C}^d o \mathbb{C}^d \otimes \mathbb{C}^d$$

$$V|\beta\rangle = U|0\rangle \otimes |\beta\rangle$$

Can provably useless states be created efficiently?



We can get to  $E_g > n-o(n)$  using a TTN construction.

d-level systems

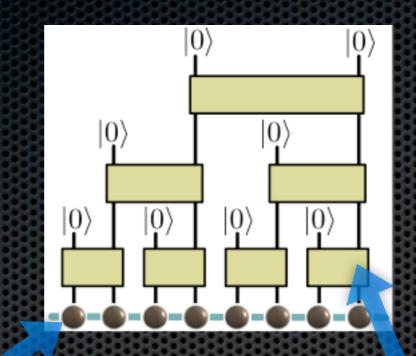
Concatenate to get the state of 2<sup>k</sup> qudits at level k.

Isometry V = V(U)

$$V:\mathbb{C}^d o \mathbb{C}^d \otimes \mathbb{C}^d$$

$$V|\beta\rangle = U|0\rangle \otimes |\beta\rangle$$

Can provably useless states be created efficiently?



We can get to  $E_g > n-o(n)$  using a TTN construction.

d-level systems

Concatenate to get the state of 2<sup>k</sup> qudits at level k.

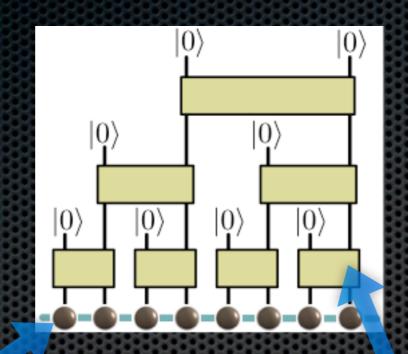
Isometry V = V(U)

$$V:\mathbb{C}^d o \mathbb{C}^d \otimes \mathbb{C}^d$$

$$V|\beta\rangle = U|0\rangle \otimes |\beta\rangle$$

Now choose each U randomly, and let d grow slowly, (log n)<sup>1/2</sup>.

Can provably useless states be created efficiently?



We can get to  $E_g > n-o(n)$  using a TTN construction.

d-level systems

Concatenate to get the state of 2<sup>k</sup> qudits at level k.

Isometry V = V(U)

$$V: \mathbb{C}^d \to \mathbb{C}^d \otimes \mathbb{C}^d$$

$$V|\beta\rangle = U|0\rangle \otimes |\beta\rangle$$

Now choose each U randomly, and let d grow slowly, (log n)<sup>1/2</sup>.

 $E_g > n - o(n)$ 

# Decision problems

I have a generic Ψ.

Can I compute

anything with it?





For almost every state Ψ, there is no poly-bounded classical control circuit which allows a significant advantage over classical randomness. Only problems in BPP can be solved. (BMW '08)

$$\Pr_{\Psi} \left\{ \exists C \left| C(\Psi) - C(2^{-n} \mathbb{1}) \right| > \epsilon \right\} \le \left( 8^8 w \right)^{3v} e^{-c\epsilon^2 2^n}$$

# Randomness vs entanglement?

Random states such that  $E_g \le log K + O(1)$  also offer no advantage!

Choose nK states at random from  $\mathbb{C}^2$  to construct the following (where K is superpolynomial in n):

$$R := \sum_{j=1}^{K} |\psi_j^{(1)}\rangle\langle\psi_j^{(1)}| \otimes \cdots \otimes |\psi_j^{(n)}\rangle\langle\psi_j^{(n)}|$$

Randomly pick a state from the support of R then:

$$|\Psi\rangle = \frac{1}{\sqrt{\langle\Psi_0|R|\Psi_0\rangle}} \sqrt{R}|\Psi_0\rangle$$

$$\Pr_{\Psi} \left\{ \exists C \left| C(\Psi) - C(2^{-n}\mathbb{1}) \right| > \epsilon \right\} \le \left( 2^n + \left( 8^8 w \right)^{3v} \right) e^{-c'\epsilon^2 K^{1/3}}$$



## Questions

- Can we derandomize these constructions?
- Can Hastings' techniques give improved bounds?
- Are efficiently created states subject to this effect?
- What happens with a polynomial number of copies?
- What implications does this have for the circuit model?