

Quantum Algorithms for the Triangle Problem

Frédéric Magniez

http://www.lri.fr/~magniez

joint work with

Miklos Santha

CNRS-LRI (Université Paris-Sud)

Mario Szegedy

Rutgers University

Oracle Input

lacksquare A (non-oriented) graph G on n vertices given as a black-box

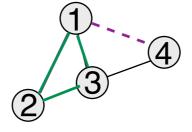
Output

- A triangle, if there is any
- Reject, otherwise

Query model

- lacksquare Query: $(i,j) \in [n]^2$
- lacksquare Answer: 1 if $(i,j) \in G$, 0 otherwise
- Complexity: number of queries (QQC)

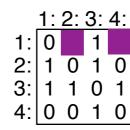
Input:



Queries: $(1,2) \mapsto 1$ $(1,4) \mapsto 0$

Ouput: (1, 2, 3)

Oracle Adjacency function



Generalities

■ Deterministically: $\Theta(n^2)$ [Rivest, Vuillemin'76]

- Randomly: $\Omega(n^{4/3}\log^{1/3}n)$ [Hajnal'91; Chakrabarti, Khot'01]

Conjecture: $\Theta(n^2)$

 \square Quantumly: $\Omega(n^{2/3}\log^{1/6}n)$ [Yao'01]

Conjecture: $\Omega(n)$

Observations on QQC

- Any complexity in $[n, n^2]$ is possible
- ullet Most of *natural* properties have complexity in $\{n,n^{3/2},n^2\}$

Examples

- Having an edge, a star: $\Theta(n)$
- ullet Connectivity, ...: $ilde{\Theta}(n^{3/2})$ [Dürr, Heiligman, Høyer, Mhalla'04]
- Majority: $\Theta(n^2)$

Multiplication

- Checking $A imes B \stackrel{?}{=} C$

Randomly (time & query): $\Theta(n^2)$ Quantumly: $[\Omega(n^{3/2}), O(n^{5/3})]$ [Ambainis, Buhrman, Høyer, Karpinski, Kurar, Midrijanis'02]

lacksquare Computing A imes B = ?

Random & Quantum time : $O(n^{2.38})$

Relation to Triangle

Randomly

Query: $\Theta(n^2)$

Time: $O(n^{2.38})$ from a reduction to Matrix Multiplication

Quantumly, the situation is different:

$$\mathsf{QQC}(\mathsf{Triangle}) = o(n^{3/2})$$
 [Next slide...]

Previous results

Randomly

Tight bound: $\Theta(n^2)$

Quantumly

Lower bound: $\Omega(n)$ (best possible using adversary methods)

 $\begin{array}{c} \text{Upper bound: } O(n^{3/2}), O(n+\sqrt{n|G|}) \\ O(n\sqrt{d}) \end{array} \text{ [Buhrman, Dürr, Heiligman, Høyer, M, Santha, Wolf'01]}$

This Talk

- ullet Using $O(\log n)$ qubits: $ilde{O}(n^{10/7}) = O(n^{1.43})$
- Using O(n) qubits: $O(n^{1.3})$

Main tool: Grover search

- lacksquare Oracle Input: $f:[n]
 ightarrow \{0,1\}$
- lacksquare Output: x such that f(x)=1
- $\mathbf{QQC} = \Theta(\sqrt{n})$

Triangle between candidates

- lacksquare Additional input: a set of triangles $T\subseteq [n]^3$
- lacksquare Output: A triangle of G among those of T, if there is any
- $extstyle QQC = O(\sqrt{|T|})$

Triangle with a golden edge

- lacksquare Additional input: a set of edges $oldsymbol{E} \subseteq [oldsymbol{n}]^2$
- lacksquare Output: A triangle of G containing an edge of E
- ullet QQC $= O(\sqrt{|E|} + \sqrt{n|E\cap G|})$ by a generalization of [BDHHMSW'01]

Naive algorithm

- I. While $\exists v: d_G(v) > n^{1-\delta}$
 - a. Compute $u_G(v)$
 - b. If $G \cap \nu_G(v)^2 \neq \emptyset$, output the triangle induced by v
 - c. Otherwise disconnect $oldsymbol{v}$ from $oldsymbol{G}$
- 2. Do [BDHHMSW'01] Algorithm

Query complexity

- I. Search: \sqrt{n} , degree checking: $n^{\delta/2} \longrightarrow n^{(1+\delta)/2}$
 - a. Computation: *n*
 - b. Intersection: $\sqrt{|
 u_G(v)|^2} \leq n$

Number of iterations: W

2. Standard algorithm: $n^{(3-\delta)/2}$

Total:
$$T = W \times n + n^{(3-\delta)/2}$$

Lucky:
$$W \leq n^2/(n^{1-\delta})^2 \leq n^{2\delta} \implies T \leq n^{1.4}$$
 when $\delta = 1/5$

Unlucky:
$$W \leq n \implies T \leq n^2$$
 when $\delta = 0$

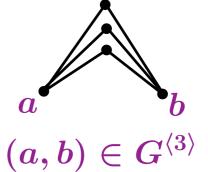
Preparation

- I. Let $k = \Theta(n^{3/7}) imes \log n$
- 2. Randomly choose $v_1, v_2, \ldots, v_k \in [n]$
- 3. Compute every neighborhood $u_G(v_i)$
- Quantum 4. If $G \cap (
 u_G(v_i))^2
 eq \emptyset$, then output the triangle induced by v_i
 - 5. Otherwise $G \subseteq G' = [n]^2 \setminus \cup (\nu_G(v_i))^2$

Query complexity: $k \times n + k \times O(\sqrt{n^2}) = O(n^{10/7})$

Definition

$$oldsymbol{G}^{\langle t
angle \operatorname{def}} \left\{ (a,b) : \left| \{ v : (a,v), (v,b) \in G \}
ight| \leq t
brace$$



Main lemma

$$G'\subseteq G^{\langle n^{4/7}
angle}$$
 (with high probability)

$$egin{aligned} (a,b)
ot\in G^{\langle n^{4/7}
angle} &\Longrightarrow \Pr_v[a,b\in
u_G(v)]>rac{n^{4/7}}{n}=rac{1}{n^{3/7}} \ & \dots &\Longrightarrow (a,b)
ot\in G' \end{aligned}$$
 (with high probability)

Main Theorem 9

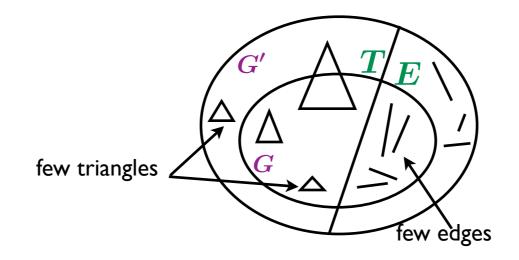
Fact: $G' \subseteq G'^{\langle t \rangle} \implies |\text{Triangles}(G')| \le n^2 \times t$

$$a$$
 b
 $(a,b) \in G' \cap G'^{\langle 3 \rangle}$

Theorem

If $G'\subseteq G^{\langle n^{4/7}\rangle}$, then using $O(n^{9/7})$ (quantum) queries G' can be efficiently partitioned into $T\cup E$ such that:

- **T** contains only $O(n^{3-1/7})$ triangles
- $oldsymbol{E} \cap oldsymbol{G}$ has size $O(n^{2-1/7})$



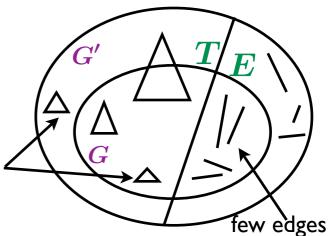
Construction of G':

$$O(n^{10/7})$$

Classification of G':

$$O(n^{9/7})$$

few triangles 2



Find a triangle inside G: $O(n^{10/7})$

Quantum \blacksquare Search for a triangle in G among all triangles inside T

$$|{
m Triangles}(T)| = O(n^{3-1/7}) \implies O(\sqrt{n^{3-1/7}}) = O(n^{10/7})$$

Quantum \blacksquare Search for a triangle in G intersecting with E

$$|E\cap G| = O(n^{2-1/7}) \implies O(n+\sqrt{n imes n^{2-1/7}}) = O(n^{10/7})$$

Theorem

$$\mathsf{QQC}(\mathrm{Triangle}) = ilde{O}(n^{10/7})$$

k-Collision problem (on a finite set S)

- lacksquare Oracle Input: A function f which determines a k-ary relation $\mathcal{C} \subseteq S^k$
- \blacksquare Output: An element of \mathcal{C} if there is any, reject otherwise

Examples

Grover search:
$$k=1, S=[n], f:[n]
ightarrow \{0,1\}$$
 $\mathcal{C}=\{x:f(x)=1\}$

Element distinctness: $egin{aligned} k = 2, S = [n], f: [n]
ightarrow [n] \ & \mathcal{C} = \{(x,y): x < y, f(x) = f(y)\} \end{aligned}$

Triangle:
$$S=[n], f_G:[n]^2 o \{0,1\}$$
 $k=3, \mathcal{C}=\{\mathrm{Triangles}(G)\}$ $k=2, \mathcal{C}=\{\mathrm{Triangle edges}(G)\}$ Remark: Triangle edge $\xrightarrow{+O(\sqrt{n}) \text{ queries}}$ Triangle

Database built from f

- lacksquare Query language: $A\subseteq S\mapsto D(A)$
- Checking procedure: Given D(A), find a collision in A^k , if there is any

Costs in queries to f

 $A \subseteq S, |A| = r$

- lacksquare Setup cost s(r): to setup D(A)
- lacksquare Update cost u(r): to update $D(A)\mapsto D(A')$ when $A'=A\pm\{x\}$
- lacksquare Checking cost c(r)

Examples

Problem	Collision relation	Database	Setup	Update	Checking	
Grover	x:f(x)=1	$f _A$	r	1	0	
ED	x < y : f(x) = f(y)	$f _A$	r	1	0	
Triangle	Triangle edges	$G _A$	r^2	$m{r}$?	

Theorem (Ambainis)

$$extstyle{f QQC} = O(s(r) + (rac{n}{r})^{k/2} imes (c(r) + \sqrt{r} imes u(r))) \ n = |S|$$

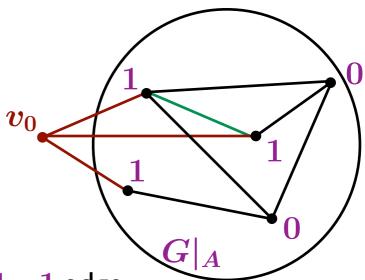
Subproblem

- Oracle Input: $G \subseteq [n]^2$
- lacksquare Additional inputs: a vertex $v_0 \in [n]$, and $G|_A$ (from database)
- ullet Output: A triangle containing $oldsymbol{v}_0$ and an edge of $oldsymbol{G}|_A$, if there is any

Reduction: $c(r) \leq \sqrt{n} \times QQC(Subproblem)$

Encoding of Subproblem

$$f:A
ightarrow \{0,1\} \ v \mapsto egin{cases} 1:(v_0,v) \in G \ 0:(v_0,v)
ot\in G \end{cases}$$



 $v_0 imes G|_A$ contains a triangle iff $|G|_A$ has a $1{-}1$ edge

Problem

- lacksquare Oracle Input: $f:[r] o \{0,1\}$
- Additional input: a graph $H \subseteq [r]^2$
- Output

An edge
$$(u,v)\in H: f(u)=f(v)=1$$
, if there is any Reject, otherwise

Theorem

$$egin{aligned} extstyle extstyle QQC &= \Omega(\sqrt{r}) \ extstyle QQC &= O(r^{2/3}) \end{aligned}$$
 (best possible using adversary methods)

Proof

Collision relation $k=2$	Database	Setup	Update	Checking
$(u,v)\in G: f(u)=f(v)=1$	$f _A$	r'	1	0

$$egin{aligned} \mathsf{QQC} = &O(r' + (rac{r}{r'})^{2/2}(0 + \sqrt{r'} imes 1)) \ &= &O(r' + rac{r}{\sqrt{r'}}) \ & o &O(r^{2/3}) \quad (r' = r^{2/3}) \end{aligned}$$

Theorem

$$\mathsf{QQC}(\mathsf{Triangle}) = O(n^{1.3})$$

Proof

Collision relation $k=2$	Database	Setup	Update	Checking
Triangle edges	$G _A$	r^2	r	$\sqrt{n} imes r^{2/3}$

$$egin{aligned} \mathsf{QQC} = &O(r^2 + (rac{n}{r})^{2/2} (\sqrt{n} imes r^{2/3} + \sqrt{r} imes r)) \ &= &O(r^2 + rac{n}{r^{1/3}} (\sqrt{n} + r^{5/6})) \ & o &O(n^{1.2} + n^{1.3} + n^{1.3}) \end{aligned} \quad (r = n^{3/5})$$

Improvement?

$$\mathsf{QQC}(\mathsf{GraphCollision}) = O(\sqrt{r}) \implies \mathsf{QQC}(\mathsf{Triangle}) = O(n^{1.25})$$

Having a copy of a given graph

- lacksquare Parameter: a graph H with l>3 vertices
- lacksquare Oracle Input: $G\subseteq [n]^2$
- \blacksquare Output: A copy of H, if there is any

Theorem

$$\mathsf{QQC} = O(n^{2-2/l})$$

Proof

Collision relation $oldsymbol{k}=oldsymbol{l}-1$	Database	Setup	Update	Checking
l-1 <i>H</i> -vertices	$G _A$	r^2	r	$\sqrt{n} imes r^{(l-1)/l}$

$$egin{aligned} \mathsf{QQC} = &O(r^2 + (rac{n}{r})^{(l-1)/2} (\sqrt{n} imes r^{(l-1)/l} + \sqrt{r} imes r)) \ &= &O(r^2 + (rac{n}{r})^{(l-3)/2} imes rac{n^{3/2}}{r^{1/l}} + (rac{n}{r})^{(l-4)/2} imes n^{3/2}) \ & o &O(n^{2-2/l} + o(n^{2-2/l}) + n^{2-2/l}) \quad (r = n^{1-1/l}) \end{aligned}$$

Corollary

Monotone graph properties whose 1-certificates have at most $l>3\,$ vertices

$$\mathsf{QQC} = O(n^{2-2/l})$$

Quantum query complexity of Triangle Problem

■ Using $O(\log n)$ qubits and Grover search:

$$ilde{O}(n^{10/7}) = O(n^{1.43})$$

■ Using O(n) qubits and Database reformulation of Ambainis QW:

$$O(n^{1.3})$$

Tight bound?

Best possible lower bound using adversary methods: $\Omega(n)$

Best possible upper bound using second algorithm: $O(n^{1.25})$

Extension to Monotone Graph Properties

$$\mathsf{QQC} = O(n^{2-2/l})$$

l: vertex certificate size

Determinant

- Checking $\det(A) \stackrel{?}{=} 0$

Query (random & quantum): $\Theta(n^2)$ Time (random & quantum): $O(n^{2.38})$ [Ambainis, Buhrman, Høyer, Karpinski, Kurar, Midrijanis'02; Santha'03]

Relation to Bipartite Perfect Matching

Randomly

Query: $\Theta(n^2)$

Time: $O(n^{2.38})$ from a reduction to Determinant

Quantumly

Query: $[\Omega(n^{3/2}), O(n^2)]$

[Ambainis, Karpinski'02, Dürr'03]

Time: $O(n^2)$

[Ambainis, Karpinski'02]

Question:

$$\mathsf{QQC}(\mathrm{BPM}) \stackrel{?}{=} o(n^2)$$