7th Workshop in Quantun Information Processing, Waterloo, Canada, January 16th, 2004

Quantum symmetric group problems

Julia Kempe

UC Berkeley and LRI, Orsay, France joint works with

Aner Shalev (Hebrew University) and Joshua von Korff (UC Berkeley)

Outline

Two Results:

- The <u>hidden subgroup problem</u> and <u>permutation groups</u> (with A. Shalev) a characterisation of distinguishable subgroups
- The <u>lost permutation problem</u> (with J. von Korff) a quantum over classical improvement in transmitting permutations through a shuffling channel

Some proofs and explanations

Quantum Fourier Sampling and the Hidden Subgroup Problem over the symmetric group

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups (Shor's algorithm, discrete log)

HSP: H < G $f: G \rightarrow R$

 $\forall h \in H$ f(x) = f(xh)

Promise: f is <u>constant</u> on cosets of H and <u>distinct</u> on different cosets.

Task: find a set of generators for H.

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups (Shor's algorithm, discrete log)

What about non-Abelian groups?

<u>Symmetric group</u> – would imply solution to the graph isomorphism/automorphism problem.

(Abelian groups have one-dimensional irreducible representations.)

Only few known results on non-Abelian groups: Efficient solutions for:

 Dihedral group – information theoretic solution to HSP [Ettinger, Hoyer'99], exponential classical postprocessing (or subexp algorithm [Kuperberg03])

(dihedral group: irreps have small dimension)

Only few known results on non-Abelian groups: Efficient solutions for:

- Dihedral group information theoretic solution to HSP [Ettinger, Hoyer'99], exponential classical postprocessing (improved to subexp [Kuperberg03])
 (dihedral group: irreps have small dimension)
- Normal subgroups (gHg⁻¹=H) [Hallgren et al.'00]
- Some semidirect products and wreath products of Abelian groups [Roetteler, Beth'98], [Grigni et al.'01], affine groups [Moore et al.'04]
- Groups with small commutator groups [Ivanyos et al.'01], solvable groups of constant exponent [Friedl et al.'03]...

All this does not apply to the symmetric group $S_n!$

- Subgroups are far from normal (lots of conjugate subgroups gHg⁻¹)
- Most Irreps are *large* ($2^{\theta(n \log n)}$)
- Only partial explicit knowledge about irreps and characters

Crash-course in representation theory

```
Representation: G \rightarrow G(d) GL(d) = d-by-d matrices preserves group structure of G (homomorphism) \rho(g_1 \circ g_2) = \rho(g_1)\rho(g_2)
```

Irreducible representation (irrep): does not split into a (common) block structure in some basis

Crash-course in representation theory

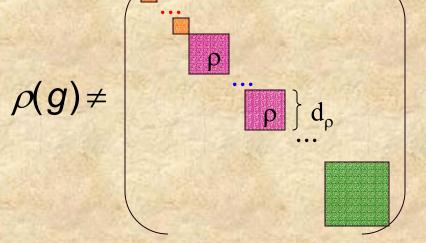
Representation: $G \rightarrow G(d)$

$$GL(d) = d-by-d$$

matrices

preserves group structure of G (homomorphism) $\rho(g_1 \circ g_2) = \rho(g_1)\rho(g_2) \qquad \dim \rho = d_{\rho}$

Irreducible representation (irrep): does not split into a (common) block structure in some basis



Every representation splits into irreps.

Character:

$$\chi(g) = tr \rho(g)$$

$$\chi(g) = \chi(hgh^{-1})$$

Crash-course in representation theory

Orthogonality relations:

the vectors
$$\frac{1}{\sqrt{|G|}} \sum_{\rho,i,i} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$$
 are orthonormal

Representation:
$$\rho: G \to G$$
 (d) $GL(d) = d$ -by-d matrices preserves group structure of G (homomorphism) $\rho(g_1 \circ g_2) = \rho(g_1) \rho(g_2)$

Quantum Fourier Sampling

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups (Shor's algorithm, discrete log)

QFS:

1) uniform superposition over G

$$|s\rangle|0\rangle = \frac{1}{|G|} \sum_{g \in G} |g\rangle|0\rangle$$

QFS

QFS:

1) uniform superposition over G

$$|s\rangle|0\rangle = \frac{1}{|G|} \sum_{g \in G} |g\rangle|0\rangle$$

2) Apply f, measure (or trace) second register

$$\sum_{g \in G} |g\rangle |f(g)\rangle \to |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

2) Apply f, measure (or trace) second register $\sum_{g \in G} |g\rangle|f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$ 3) QFT

$$\sum_{g \in G} |g\rangle |f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

$$|g\rangle \to \frac{1}{\sqrt{|\mathbf{G}|}} \sum_{\rho,i,j} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$$

2) Apply f, measure (or trace) second register $\sum_{g \in G} |g\rangle|f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$ 3) QFT

$$\sum_{g \in G} |g\rangle |f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

$$|g\rangle \to \frac{1}{\sqrt{|\mathbf{G}|}} \sum_{\rho,i,j} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$$

Note: for Abelian groups $d_{\rho}=1$ and $\rho(g)=\chi(g)$

$$|g\rangle \to \frac{1}{\sqrt{|G|}} \sum_{\chi} \chi(g) |\chi\rangle$$

$$|s\rangle|0\rangle = \frac{1}{|G|} \sum_{g \in G} |g\rangle|0\rangle$$

QFS:
1) uniform superposition over G
$$|s\rangle|0\rangle = \frac{1}{|G|} \sum_{g \in G} |g\rangle|0\rangle$$
2) Apply f, measure (or trace) second register
$$\sum_{g \in G} |g\rangle|f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$
3) QFT $|g\rangle \rightarrow \frac{1}{|G|} \sum_{g \in G} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$

$$|g\rangle \rightarrow \frac{1}{\sqrt{|G|}} \sum_{\rho,i,j} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$$

gives

$$\frac{1}{\sqrt{|\mathbf{G}|\mathbf{H}}} \sum_{\rho,i,j} \sqrt{d_{\rho}} \sum_{h \in \mathcal{H}} \rho(\mathbf{gh})_{ij} |\rho,i,j\rangle$$

with random

 $|s\rangle|0\rangle = \frac{1}{|G|} \sum_{g \in G} |g\rangle|0\rangle$ uniform superposition over G

2) Apply f, measure (or trace) second register
$$\sum_{g \in G} |g\rangle|f(g)\rangle \rightarrow |gH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$
3) QFT
$$|g\rangle \rightarrow \frac{1}{\sqrt{|G|}} \sum_{\rho,i,j} \sqrt{d_{\rho}} \rho(g)_{ij} |\rho,i,j\rangle$$

 $\frac{1}{\sqrt{|GH|}} \sum_{g \neq i} \sqrt{d_{\rho}} \sum_{h \in H} \rho(gh)_{ij} |\rho, i, j\rangle \qquad \text{with random g}$ gives

4) Sample (measure): probability distribution

$$P_{gH}(\rho,i,j) = \frac{d_{\rho}}{|\mathbf{G}H|} \left| \sum_{h \in H} \rho(gh)_{ij} \right|^{2}$$

QFS

Probability distribution:

Weak form: sample p only (average over i,j)

$$P_{gH}(\rho) = \sum_{i,j} P_{gH}(\rho,i,j) = \frac{d_{\rho}}{|\mathbf{G}|H|} \sum_{i,j} \left| \sum_{h \in H} \rho(gh)_{ij} \right|^{2} = \frac{d_{\rho}}{|\mathbf{G}|} \sum_{h \in H} \chi(h) = P_{H}(\rho)$$

Remark: Same distribution for all conjugate subgroups

H'=gHg⁻¹ (cyclic property of trace).

QFS

Probability distribution:

Weak form: sample p only (average over i,j)

$$P_{gH}(\rho) = \sum_{i,j} P_{gH}(\rho,i,j) = \frac{d_{\rho}}{|\mathbf{G}|H|} \sum_{i,j} \left| \sum_{h \in H} \rho(gh)_{ij} \right|^2 = \frac{d_{\rho}}{|\mathbf{G}|} \sum_{h \in H} \chi(h) = P_{H}(\rho)$$

Remark: Same distribution for all conjugate subgroups H'=gHg⁻¹ (cyclic property of trace).

Strong form: sample p, i, j in some basis
Choice of basis is arbitrary...

Previous results for QFS of S_n (Hallgren, Russel, TaShma'00, Grigni, Schulman, Vazirani, Vazirani '01):

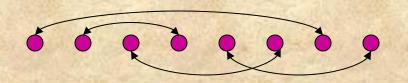
 Strong form: rows provide no additional information (the distribution on rows is always uniform) [GSVV'01]

Previous results for QFS of S_n (Hallgren et al. '00, Grigni et al. '01):

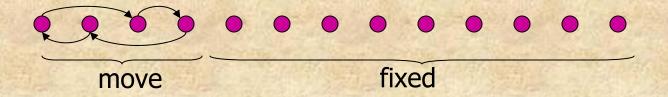
- <u>Strong form:</u> rows provide no additional information (the distribution on rows is always uniform for all G)
 [GSVV'01]
- Strong form with (uniformly) random basis: columns provide exponentially small extra information for S_n [GSVV'01]

Previous results for QFS of S_n (Hallgren et al. '00, Grigni et al. '01):

- Strong form: rows provide no additional information (the distribution on rows is always uniform) [GSVV'01]
- Strong form with (uniformly) random basis: columns provide exponentially small extra information [GSVV'01]
- Weak form: cannot distinguish involution with n/2
 2-cycles from {e} in time poly(n).

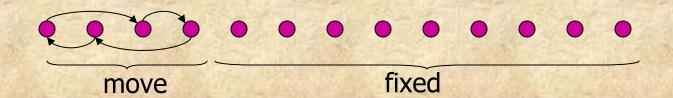


Definition: permutation of constant support = permutation in which all but a constant number of points are fixed



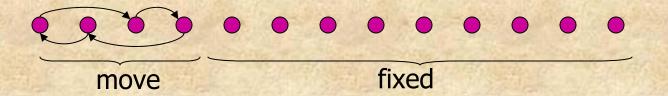
Results for S_n (joint with Aner Shalev):

- A H can be distinguished from {e} * only if it contains an element of constant support.
 - If H is of polynomial size (in n) (♠: iff)
 - If H is primitive (building blocks of all H⊆S_n)
 - For a family of subgroups of superexponential order
 - Given a group theoretic conjecture, ♠ is true for all H



^{*}with either the weak standard method or the strong standard method with random basis

Definition: permutation of constant support = permutation in which all but a constant number of points are fixed



Remark: There are only poly(n) permutations of constant support. They can be enumerated (checked) in polynomial time.

Results for S_n (joint with Aner Shalev):

- A H can be distinguished from {e} * only if it contains an element of constant support.
 - If H is of polynomial size (in n) (♠: iff)
 - If H is primitive (building blocks of all H
 - For a family of subgroups of superexponential order
 - Given a group theoretic conjecture, ♠ is true for all H

Quantum Fourier Sampling* has no advantage over classical exhaustive search (check all elements

*will feite in the strong standard method with random basis

Probability distribution from QFS:

Weak form:

$$P_{gH}(\rho) = \sum_{i,j} P_{gH}(\rho,i,j) = \frac{d_{\rho}}{|\mathbf{G}H|} \sum_{i,j} \left| \sum_{h \in H} \rho(gh)_{ij} \right|^{2} = \frac{d_{\rho}}{|\mathbf{G}|} \sum_{h \in H} \chi(h) = P_{H}(\rho)$$

Total distribution distance between P_H and $P_{\{e\}}$:

$$\left| D_{H} = \frac{1}{|\Phi|} \sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right| \right|$$

Probability distribution from QFS:

Weak form:

$$P_{gH}(\rho) = \sum_{i,j} P_{gH}(\rho,i,j) = \frac{d_{\rho}}{|\mathbf{G}|H|} \sum_{i,j} \left| \sum_{h \in H} \rho(gh)_{ij} \right|^{2} = \frac{d_{\rho}}{|\mathbf{G}|} \sum_{h \in H} \chi(h) = P_{H}(\rho)$$

Total distribution distance between P_H and P_{e}:

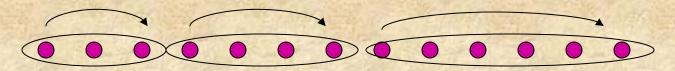
$$D_{H} = \frac{1}{|\mathbf{G}|} \sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right|$$

H and {e} efficiently distinguishable informationtheoretically iff $D_H \ge (\log G)^{-c} = n^{-c'}$

Definition: Conjugacy class C— set closed under conjugation by elements in G

$$G_n = \{ghg^{-1}: \forall g \in G\}$$

For S_n : Conjugacy class of π = permutations with the same cycle structure



Main tool:

$$D_{H} = \frac{1}{|\mathbf{G}|} \sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right|$$

Lemma:
$$C_1,...,C_k$$
 – non-identity conjugacy classes of G.
$$\sum_{i=1}^k |C_i\cap H|^2|H^{-1}|C_i|^{-1} < D_H < \sum_{i=1}^k |C_i\cap H||C_i|^{-1/2}$$

Hidden subgroups of S_n in tool: $Q_H = \frac{1}{C} \sum_{\rho} d_{\rho} \sum_{h \in H, h \neq e} \chi_{\rho}(h)$

Main tool:

Lemma:
$$C_1, ..., C_k$$
 – non-identity conjugacy classes of G.
$$\sum_{i=1}^k |G \cap H|^2 |H|^{-1} |G|^{-1} < D_H < \sum_{i=1}^k |G \cap H| |G|^{-\frac{1}{2}}$$

Corollary 1: C_{min} of minimal size intersecting H

$$|H^{-1}|C_{\min}|^{-1} < D_H < (|H|-1)|C_{\min}|^{-\frac{1}{2}}$$

Hidden subgroups of S_n Main tool:

Corollary 1: C_{min} of minimal size intersecting H

$$|H^{-1}|C_{min}|^{-1} < D_H < (|H|-1)|C_{min}|^{-\frac{1}{2}}$$

Remark: $g \in S_n$ has support k. Then $\left(\frac{n}{e}\right)^k \le \binom{n}{k} \le C_g \le n^k$

 $n^{-c'} < (|H|-1)|C_{min}|^{-\frac{1}{2}} < D_H$ and $|H|=poly(n)=n^c$ \Rightarrow distinguishable iff k=const.

Main tool:

Corollary 1: C_{min} of minimal size intersecting H

$$|H^{-1}|C_{\min}|^{-1} < D_H < (|H|-1)|C_{\min}|^{-\frac{1}{2}}$$

Remark: $g \in S_n$ has support k. Then $\left(\frac{n}{e}\right)^k \le {n \choose k} \le C_g \le n^k$

 $n^{-c'} < (|H|-1)|C_{min}|^{-\frac{1}{2}} < D_H$ and $|H|=\text{poly}(n)=n^c$ \Rightarrow distinguishable iff k=const.

Corollary 2: If |H|=poly(n): distinguishable iff H contains an element of constant support.

Main tool
$$D_{H} = \frac{1}{|\varphi|} \sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right|$$

Lemma: $C_1,...,C_k$ – non-identity conjugacy classes

$$\sum_{i=1}^{k} |G \cap H|^{2} |H|^{-1} |G|^{-1} < D_{H} < \sum_{i=1}^{k} |G \cap H| |G|^{-\frac{1}{2}}$$

Proof idea of upper bound:

$$\sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right| \leq \sum_{\rho} d_{\rho} \sum_{h \in H, h \neq e} \left| \chi_{\rho}(h) \right|$$

$$\sum_{\rho} d_{\rho} \left| \chi_{\rho}(h) \right| \leq \sqrt{\sum_{\rho} d_{\rho}^{2}} \sqrt{\sum_{\rho} \left| \chi_{\rho}(h) \right|^{2}} \leq \sqrt{\left| G \right|} \sqrt{\left| G \right|} = \left| G \left| G \right|^{-\frac{1}{2}}$$

Main tool
$$D_{H} = \frac{1}{|\varphi|} \sum_{\rho} d_{\rho} \left| \sum_{h \in H, h \neq e} \chi_{\rho}(h) \right|$$

Lemma: C₁,...,C_k – non-identity conjugacy classes

$$\sum_{i=1}^{k} |C \cap H|^{2} |H|^{-1} |C|^{-1} < D_{H} < \sum_{i=1}^{k} |C \cap H| |C|^{-\frac{1}{2}}$$

Proof idea of lower bound:

$$\left|\sum_{h\in H,h\neq e}\chi_{\rho}(h)\right| \leq \sum_{h\in H,h\neq e}\left|\chi_{\rho}(h)\right| \leq \sum_{h\in H,h\neq e}d_{\rho} \leq |H|d_{\rho}$$

$$d_{\rho} > |H|^{-1}\left|\sum_{h\in H,h\neq e}\chi_{\rho}(h)\right|$$

$$\chi_{\rho}(h) = \chi_{\rho}(G) \quad \text{if} \quad h\in H\cap G$$

$$D_{H} > \frac{1}{|G|H}\sum_{\rho}\left|\sum_{h\in H,h\neq e}\chi_{\rho}(h)\right|^{2} = \frac{1}{|G|H}\sum_{\rho}\left|\sum_{i=1}^{k}|H\cap G|\chi_{\rho}(G)\right|^{2}$$

Generalized orthogonality relations ...

Theorem: $H < S_n$ of non-constant support. If for all $k \le n$ H has at most $n^{k/7}$ elements of support $\le k$ then H indistinguishable.

Hidden subgroups of S_n

Theorem: $H < S_n$ of non-constant support. If for all $k \le n$ H has at most $n^{k/7}$ elements of support $\le k$ then H indistinguishable.

Group theoretic conjecture: $H < S_n$ of non-constant support. For all $k \le n$ H has at most $n^{k/7}$ elements of support $\le k$ (true for *primitive groups, family of superexponentially large groups*).

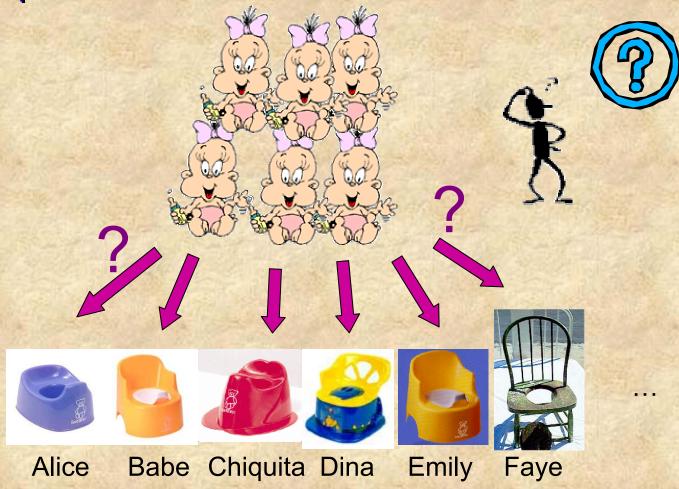
Implies: If H distinguishable ⇒ H has constant minimal support (♠).

QFS is no stronger than classical exhaustive search (only poly many elements of constant degree).

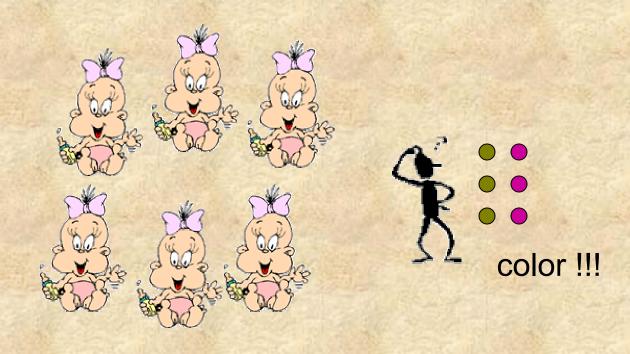
Permutation transmission through a shuffling channel the prolific family problem

Hexa-plets:

Hexa-plets:



Hexa-plets:



Alice Babe Chiquita Dina Emily Faye

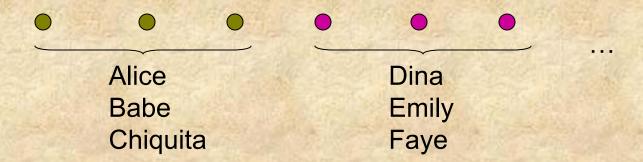
Hexa-plets:

2 colors, n babies:

Task: restore the original order exactly after random shuffling

best strategy: n/2 green, n/2 red

Hexa-plets:



2 colors, n babies:

Task: restore the original order exactly after random shuffling

best strategy: n/2 in green, n/2 red

success probability:

$$p_c = \frac{1}{\left(\frac{n}{2}!\right)^2}$$

General problem: encode a permutation optimally aga shuffling noise

k colors (log k bits per item), n items:

· best strategy: k blocks of size n/k in one color

• success probability: $p_c(k) = \frac{1}{(n/k!)^k}$

$$p = \frac{1}{\binom{n}{k!}} \qquad p = \frac{1}{\binom{n}{k!}} \qquad p = \frac{1}{\binom{n}{k!}} \qquad p = \frac{1}{\binom{n}{k!}}$$

Need k=n colors to obtain success probability p=1!

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items:

$$| \mathbf{b} \rangle + | \mathbf{b} \rangle + | \mathbf{b} \rangle + \dots$$

$$p_c(k) = \frac{1}{\left(\frac{n}{k!}\right)^k}$$

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items:

$$| \rangle + | \rangle + | \rangle + \dots$$

Results (joint with Joshua von Korff):

 $p_c(k) = \frac{1}{\left(\frac{n}{k!}\right)^k}$

quantum success probability:

$$p_{q}(k) = \frac{k^{n} - o(k^{n})}{n!} \qquad \text{(for } k < \frac{1}{5}\sqrt{n}$$

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items:

$$| \rangle + | \rangle + | \rangle + \dots$$

Results (joint with Joshua von Korff):

 $p_c(k) = \frac{1}{\left(\frac{n}{k!}\right)^k}$

quantum success probability:

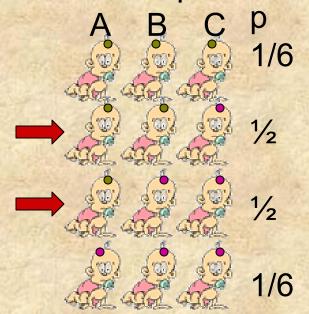
$$p_{q}(k) = \frac{k^{n} - o(k^{n})}{n!} \qquad \text{for} \quad k < \frac{1}{5} \sqrt{n} \\ \frac{p_{q}(k)}{p_{c}(k)} \to \frac{(2\pi n)^{(k-1)/2}}{k^{k/2}}$$

Conjecture: true for all k (probably true)

Need $k \approx \frac{n}{e}$ colors to obtain success probability p=1! (k=n classically)

Example: triplets 2 quantum states :

Classical Options:



Example: triplets 2 quantum states:

Classical Options:

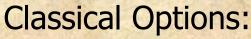
ABCP

Quantum solution: $(\alpha^3 = 1)$ $\sqrt{2}/15(|\alpha|^2 + \alpha|^2 + \alpha^2|\alpha|^2) + \alpha^2|\alpha|^2 + \alpha^2|\alpha|^2$

Quantum success probability: p=5/6

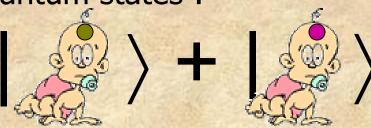
 $\sqrt{2/15}\left(\left|\begin{array}{c} \bullet & \bullet \\ \bullet &$

Example: triplets 2 quantum states:



ABCP

$$p_{quantum} = \frac{2^n - n}{n!}$$



Quantum solution:

$$(\alpha^3=1)$$

$$\sqrt{\frac{2}{15}} \left(\left| \frac{1}{15} \left(\left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15$$

$$\sqrt{2/15} \left(\left| \frac{1}{15} \left(\left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \left| \frac{1}{15} \right| \frac{1}{15} \right| \frac{1}{15} \left|$$

Quantum success probability: p=5/6

$$p_{\text{dassical}} = \frac{1}{(n/2!)^2}$$

$$\frac{p_{\text{quantum}}}{p_{\text{densied}}} \to \sqrt{n}$$

The p-f problem \rangle + Quantum solution: $(\alpha^3 = 1)$

$$\alpha^3 = 1$$

Quantum solution:
$$(\alpha^{\circ} = 1)$$

$$|\psi\rangle = \sqrt{\frac{1}{5}} |000\rangle + \sqrt{\frac{2}{15}} (|100\rangle + \alpha |010\rangle + \alpha^{2} |001\rangle) + \sqrt{\frac{2}{15}} (|110\rangle + \alpha^{2} |101\rangle + \alpha |011\rangle)$$

 $|\psi\rangle$ chosen such that set of permutations of $|\psi\rangle$ "as orthogonal as possible"

$$S_3 = \{s_i : i = 1..6\} = \{id, (12), (13), (23), (231), (312)\}$$

The p-f problem $| \psi \rangle + | \psi \rangle$

Quantum solution: $(\alpha^3 = 1)$

$$\alpha^3 = 1$$

$$|\psi\rangle = \sqrt[4]{5}|000\rangle + \sqrt[2]{15}(|100\rangle + \alpha|010\rangle + \alpha^2|001\rangle) + \sqrt[2]{15}(|110\rangle + \alpha^2|101\rangle + \alpha|011\rangle)$$

 $|\psi\rangle$ chosen such that set of permutations of $|\psi\rangle$ "as orthogonal as possible"

$$S_3 = \{s_i : i = 1..6\} = \{id, (12), (13), (23), (231), (312)\}$$

"Ideal" case: $\{s_i|\psi\rangle: i=1..6\}$ orthogonal set

$$\sum_{i=1}^{6} s_{i} |\psi\rangle\langle\psi|s_{i} \cong \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & 0 \end{pmatrix}$$

The p-f problem | >> + |

Quantum solution: $(\alpha^3 = 1)$

$$\alpha^3 = 1$$

$$|\psi\rangle = \sqrt[4]{5}|000\rangle + \sqrt[2]{15}(|100\rangle + \alpha|010\rangle + \alpha^2|001\rangle) + \sqrt[2]{15}(|110\rangle + \alpha^2|101\rangle + \alpha|011\rangle)$$

 $|\psi
angle$ chosen such that set of permutations of $|\psi
angle$ "as orthogonal as possible"

$$S_3 = \{s_i : i = 1..6\} = \{id, (12), (13), (23), (231), (312)\}$$

"Ideal" case: $\{s_i|\psi\rangle: i=1..6\}$ orthogonal set

$$\sum_{i=1}^{6} s_{i} |\psi\rangle\langle\psi|s_{i} \cong \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & 0 \end{pmatrix}$$

However "cover" only 5 dimensions (not 6). $\langle \$\psi | \$_j \psi \rangle = \frac{1}{5} \delta_{ij}$ Why? Irreps of $\$S_n$ in tensor-representation...

Basic facts from representation theory

Schur's lemma:

Let ρ be an irrep. of dimension d, $A \in GL(d)$ s.th.

$$A\rho(g) = \rho(g)A \quad \forall g \in G$$

then $A \cong I_d$

Basic facts from representation theory

Schur's lemma:

Let ρ be an irrep. of dimension d, $A \in GL(d)$ s.th.

$$A\rho(g) = \rho(g)A \quad \forall g \in G$$

then $A \cong I_{d}$.

Application: "group average" $A = \frac{1}{|G|} \sum_{g \in G} \rho(g)$

$$A\rho(g) = \frac{1}{|G|} \sum_{g \in G} \rho(g) \rho(g) = \frac{1}{|G|} \sum_{g \in G} \rho(gg) = \frac{1}{|G|} \sum_{g \in$$

 S_n acts on $C_k^{\otimes n}$ by permutation of the basis states

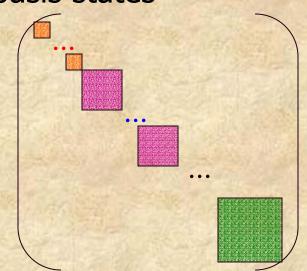
 \Rightarrow representation ρ in GL(dⁿ)

ex: $\rho((213))|101\rangle = |011\rangle$

splits space into irreducible subspaces Vo

$$s_{\psi} = \frac{1}{n!} \sum_{g \in S_n} \rho(g) |\psi\rangle\langle\psi| \rho^{\dagger}(g)$$

Note
$$\rho(g)s_{\psi} = s_{\psi}\rho(g) \quad \forall g \in S_n$$



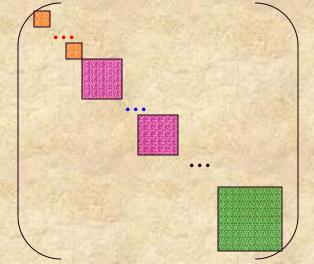
 S_n acts on $C_k^{\otimes n}$ by permutation of the basis states

 \Rightarrow representation ρ in GL(dⁿ)

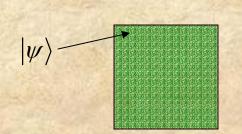
ex: $\rho((213))|101\rangle = |011\rangle$

splits space into irreducible subspaces V_o

$$s_{\psi} = \frac{1}{n!} \sum_{g \in S_n} \rho(g) |\psi\rangle\langle\psi| \rho^{\dagger}(g)$$

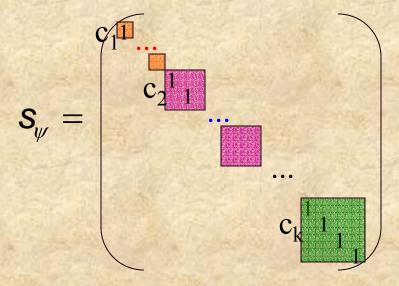


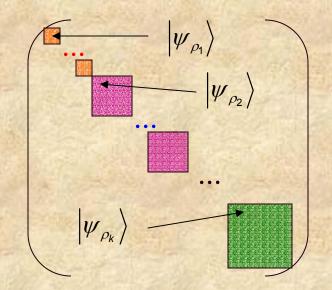
Note $\rho(g)s_{\psi} = s_{\psi}\rho(g) \quad \forall g \in S_h$ Assume $|\psi\rangle \in V_{\rho}$. Then $s_{\psi} \cong Id$ by Schur's lemma



If
$$|\psi\rangle = |\psi_{\rho_1}\rangle + |\psi_{\rho_2}\rangle + ... + |\psi_{\rho_k}\rangle$$

Then

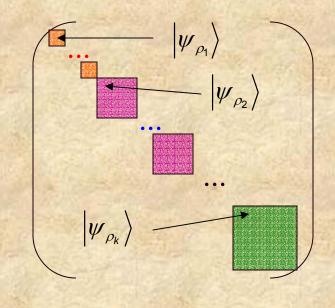




If
$$|\psi\rangle = |\psi_{\rho_1}\rangle + |\psi_{\rho_2}\rangle + \dots + |\psi_{\rho_k}\rangle$$

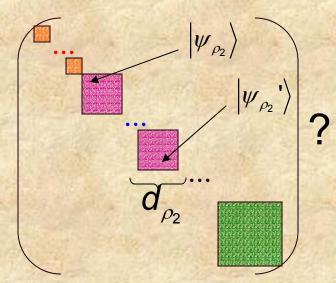
Then

$$S_{\psi} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$



Choose
$$|\psi\rangle = \frac{1}{\kappa} \left(\sqrt{d_{\rho_1}} |\psi_{\rho_1}\rangle + \sqrt{d_{\rho_2}} |\psi_{\rho_2}\rangle + ... + \sqrt{d_{\rho_k}} |\psi_{\rho_k}\rangle \right)$$
 to "cover" all space?

Problem: multiple equivalent irreps!

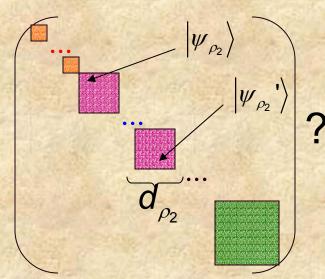


Multiplicity of irrep ρ : m_{ρ} Can we "use" multiple copies of same irrep?

$$\sum_{\rho} m_{\rho} d_{\rho} = k^{n}$$

Result:

Th: Can use at most d_{ρ} copies of an irrep ρ .



Multiplicity of irrep ρ : m_{ρ} Can we "use" multiple copies of same irrep?

$$\sum_{\rho} m_{\rho} d_{\rho} = k^{n}$$

Result:

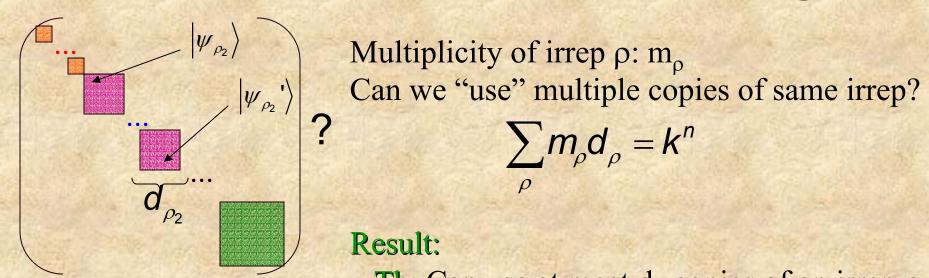
Th: Can use at most d_{ρ} copies of an irrep ρ .

Ex.:
$$S_3$$

$$\sum_{i=1}^6 s_i |\psi\rangle\langle\psi|s_i \cong$$

$$\begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 0 & \\ & & & 0 & \end{pmatrix}$$
 "cover" only 5 dim.

"use"



$$\sum_{\rho} m_{\rho} d_{\rho} = k^{n}$$

Result:

Th: Can use at most d_{ρ} copies of an irrep ρ .

$$\max rank(s_{\psi}) = \sum_{\rho} \min(m_{\rho}, d_{\rho})d_{\rho}$$

For $k \le \frac{1}{5}\sqrt{n}$ "most" irreps have multiplicity smaller than their dimension. "Loose" only o(kn) part of full space.

Use Young-tableau rules to estimate $m_{\text{mex}} \leq n^{k^2}$, number of irreps of S_n at most $\binom{n}{k}$

$$\sum_{\rho} m_{\rho} d_{\rho} = k^{n}$$

$$\begin{aligned} \max & \operatorname{rank}(s_{\psi}) = \sum_{\rho} \min(m_{\rho}, d_{\rho}) d_{\rho} \\ & \geq k^{n} - \sum_{\rho: m_{\rho} > d_{\rho}} (m_{\rho} - d_{\rho}) d_{\rho} \geq k^{n} - \sum_{\rho: m_{\rho} > d_{\rho}} m_{\rho} m_{\rho} \geq k^{n} - \binom{n}{k} n^{2k^{2}} \\ & = k^{n} - o(k^{n}) \qquad k < \frac{1 - \varepsilon}{4} \sqrt{n} \end{aligned}$$

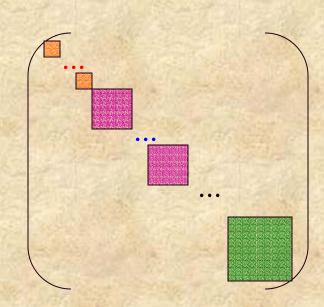
Summary

Permutation transmission:

- quantum advantage to transmission of permutation through a shuffling channel
- less colors needed quantumly

HSP:

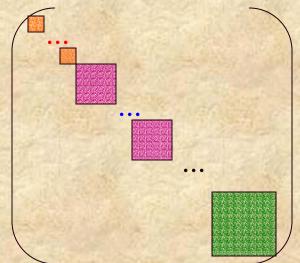
- identified large class of hidden subgoups of S_n that cannot be distinguished from each other
- evidence that QFS (with random basis) not stronger than classical search for S_n



Open Questions

Permutation transmission:

- Prove result for all k (probably true) $(\Rightarrow \approx n/e \text{ colors for } p = 1)$
- find more applications, also for other groups



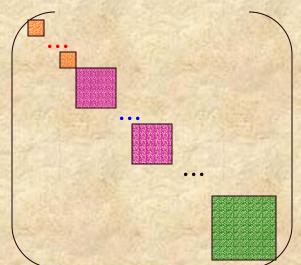
HSP:

- Prove group theoretic conjecture
- Prove there is no "good" basis for the strong method

Open Questions

Permutation transmission:

- Prove result for all k (probably true) $(\Rightarrow \approx n/e \text{ colors for } p = 1)$
- find more applications, also for other groups

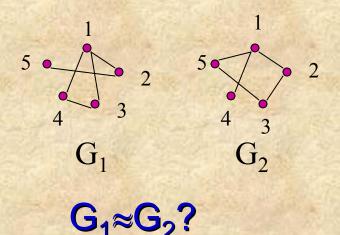


HSP:

- Prove group theoretic conjecture
- Prove there is no "good" basis for the strong method

STOP!!!

Graph Isomorphism



Let G=G₁∪G₂ and determine automorphism group

$$A = {\pi \in S_{2n} : \pi(G) = G}.$$

Check if it splits as $H_1 \times H_2 \subseteq S_n \times S_n \implies G_1 \approx G_2$.

A is hidden subgroup of S_n of $f: S_n \rightarrow G$ $f: \pi \rightarrow \pi(G)$